Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
\(x^2+4y^2-4x-4y+5=0\)
<=> \(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
<=> \(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
<=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
học tốt
a, Xét tam giác ABC có AD=DB,AE=EC
=>DE là đường trung bình của tam giác ABC
b,Xét tứ giác DQBC có :
DE//BC=>DQ//BC(E nằm trên đường thẳng DQ)
DQ=BC(gt)
=>tứ giác DQBC là hình bình hành
c, Xét tứ giác AKCH có:
AE=AC(gt)
HE=EK(gt)
=>tứ giác AKCH là hình chữ nhật
nhưng đây là toán 8 ,đầu năm thì đc hok hằng đẳng thức nên sẽ áp dụng theo HĐT
đề e đăng sai rồi,sửa:
\(\left(2x+1\right)\left(4x^2-2x+1\right)-\left(8x^3-1\right)\)
\(=8x^3+1-8x^3+1\)
\(=2\)
Vậy gt bt trên ko phụ thuộc vào biến.
Mình lười ko chép lại đề nhé ( thông cảm )
a, 3x . x + 3x . (-4) - 2x + 8 = 0
3x2 - 12x - 2x + 8 = 0
3x2 - 14x = - 8
Đến đoạn này bn thu x về một vế và tính nha ( tịt mợ r)
b, ( 3x)2 - 2.3x.1 + 12 - " đoạn này phải là ( 3x - 1 ).(3x+1) chứ" (3x)2 - 12 = 2
9x2 - 6x +1 - 9x2 - 1 = 2
- 6x = 2
x = 2 / -6
x = -1/3
Mh chỉ giúp đc ngần vầy , sai đừng ai anti nhá , mơn nhìu !!! Mh là FAN KPOP chính hiệu , kb nhoa mn
~ HOK TỐT ~
\(a,x^2+y^2-4x-2y+6\)
\(=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+1\)
Ta có: \(\left(x-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2+1\ge1\forall x,y\)
Hay: \(x^2+y^2-4x-2y+6\ge1\)
\(b,x^2+4y^2+z^2-4x+4y-8z+25\)
\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)+4\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\)
Vì: \(\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2+4\ge4\forall x,y,z\)
Hay: \(x^2+4y^2+z^2-4x+4y-8z+25\ge4\)
=.= hok tốt !!
\(P=\dfrac{x^3-y^3}{x^2y-xy^2}-\dfrac{x^3+y^3}{x^2y+xy^2}-\left(\dfrac{x}{y}-\dfrac{y}{x}\right)\left(\dfrac{x+y}{x-y}-\dfrac{x-y}{x+y}\right)\)
\(=\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x-y\right)}-\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x+y\right)}-\dfrac{x^2-y^2}{xy}\cdot\dfrac{x^2+2xy+y^2-x^2+2xy-y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+xy+y^2-x^2+xy-y^2}{xy}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\cdot\dfrac{4xy}{\left(x-y\right)\left(x+y\right)}\)
\(=2-4=-2\)
Bài 2:
a: Ta có: \(A=\left(x^2-3x+5\right)-\left(x^2+4x-1\right)+5x^2-3\)
\(=x^2-3x+5-x^2-4x+1+5x^2-3\)
\(=5x^2-7x+3\)
b: Ta có: \(B=\left(3x^2-11x+7\right)-\left(2x^2+3x+4\right)\)
\(=3x^2-11x+7-2x^2-3x-4\)
\(=x^2-14x+3\)