K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

a/bc + b/ac >= 2.căn(1/c^2) = 2/c
tương tự:
a/bc + c/ab >= 2/b
b/ac + c/ab >= 2/a
cộng vế theo vế ;
ta đc
a/bc +b/ac+ c/ab >= 1/a +1/b +1/c
2)
a / (b+c) + 1 = (a+b+c)/(b+c)
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 = (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
áp dụng bđt cauchy quen thuộc
(x+y+z)(1/x + 1/y + 1/z) >= 9
=> 2(a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b))
= (a+b + b+c + c+a)(1/(b+c) + 1/(a+c) + 1/(a+b)) >=9
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) >= 9/2
=> (a+b+c)(1/(b+c) + 1/(a+c) + 1/(a+b)) -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) + 3 -3 >= 3/2
=> a / (b+c) + b/(a+c) + c/(a+b) >=3/2

Chắc làm vậy

25 tháng 8 2019

\(M=\frac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

a.Ta co:\(x^2-x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=1\left(n\right)\end{cases}}\)

\(\Rightarrow M=\frac{1-2}{1}=-1\)

b.De \(M\in Z\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}}\in Z\Rightarrow\sqrt{x}-2⋮\sqrt{x}\Rightarrow x=4\)

25 tháng 8 2019

Mình cảm ơn bạn nhiều nha ^^

25 tháng 8 2019

a,Đk: \(x>0\)

Sau khi rút gọn được M=\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(x^2-x=0\) <=> \(x\left(x-1\right)=0\)=>x-1=0(vì x>0)

<=>x=1(t/m)

Thay x=1 vào b/thức M đã rút gọn có:

M= \(\frac{\sqrt{1}-2}{\sqrt{1}}=-1\)

b, Có \(M=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)

Để M \(\in Z\) <=> \(\frac{2}{\sqrt{x}}\in Z\) => \(\frac{2}{\sqrt{x}}\in N^+\)

Với \(x\in N^+\)=> \(\left[{}\begin{matrix}\sqrt{x}\in N^+\\\sqrt{x}\notin N^+\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\frac{2}{\sqrt{x}}\in N^+\left(tm\right)\\\frac{2}{\sqrt{x}}\notin N^+\left(ktm\right)\end{matrix}\right.\)

=> \(\sqrt{x}\) thuộc ước tự nhiên của 2

<=> \(\sqrt{x}\in\left\{1,2\right\}\) <=> \(x\in\left\{1;4\right\}\)

Vậy để M\(\in Z< =>x\in\left\{1;4\right\}\)

25 tháng 8 2019

bạn tự tính M nha

20 tháng 6 2018

Trả lời:

a/ \(a+b=a-\left(-b\right)=\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)\)

b/ \(5-2a=\left(\sqrt{5}\right)^2-\left(\sqrt{2a}\right)^2=\left(\sqrt{5}-\sqrt{2a}\right).\left(\sqrt{5}+\sqrt{2a}\right)\)

c/ \(a-6\sqrt{a}=\left(\sqrt{a}\right)^2-6\sqrt{a}=\sqrt{a}.\left(\sqrt{a}-6\right)\)

d/ \(\left(\sqrt{a}\right)^3-3a+3\sqrt{a}-1=\left(\sqrt{a}\right)^3-3\left(\sqrt{a}\right)^2+3\sqrt{a}-1=\left(\sqrt{a}-1\right)^3\)

21 tháng 6 2018

cảm ơn ạ !!

19 tháng 7 2017

Từ \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)và \(\hept{\begin{cases}b\ge b^2\\c\ge c^3\\abc\ge0\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Rightarrow a+b+c-\left(ab+bc+ca\right)+abc\le1\)

\(\Rightarrow a+b^2+c^3-\left(ab+bc+ca\right)\le1\)

29 tháng 9 2017

ap dung bdt am gm

\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)

\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)

tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)

\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)

tiep tuc ap dung bat cauchy-schwarz dang engel ta co

\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)

dau = xay ra \(\Leftrightarrow a=b=c=1\)