Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
AM=BC/2=5cm
b:
ΔAEH vuông tại A có AI là trung tuyến
nên IH=IA
=>góc IHA=góc IAH
góc IAH+góc MAB
=góc MBA+góc IHA=90 độ
=>góc IAM=90 độ
=>AI vuông góc AM
r) \(100x^2-\left(x^2-25\right)^2\)
\(=\left(10x\right)^2-\left(x^2+25\right)^2\)
\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)
\(=\left(-x^2+10x-25\right)\left(x^2+10x+25\right)\)
\(=-\left(x-5\right)^2\left(x+5\right)^2\)
v) \(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y\right)^2-2\left(x+y\right)\cdot1+1^2\)
\(=\left(x+y-1\right)^2\)
y) \(12y-36-y^2\)
\(=-y^2+12x-36\)
\(=-\left(y^2-12x+36\right)\)
\(=-\left(y-6\right)^2\)
r: =(10x)^2-(x^2+25)^2
=(10x-x^2-25)(10x+x^2+25)
=-(x^2-10x+25)(x+5)^2
=-(x-5)^2(x+5)^2
t: =(2x-1)^2-(x+1)^2
=(2x-1-x-1)(2x-1+x+1)
=3x*(x-2)
v: =(x+y)^2-2(x+y)*1+1^2
=(x+y-1)^2
u: =(x-y+5)^2-2(x-y+5)*1+1^2
=(x-y+5-1)^2
=(x-y+4)^2
x: =-(x^2+2xy+y^2)
=-(x+y)^2
y: =-(y^2-12y+36)
=-(y-6)^2
Bài 4
Ta có: \(\left(4+2x\right)\left(4-2x\right)+\left(2x-3\right)^2=2\)
\(\Leftrightarrow16-4x^2+4x^2-12x+9=2\)
\(\Leftrightarrow-12x=-23\)
hay \(x=\dfrac{23}{12}\)
Từ hình vẽ ta thấy :
\(x< -1\)
\(\Leftrightarrow x+4< 4+\left(-1\right)\)
\(\Leftrightarrow x+4< 3\)
\(\Rightarrow C\)
\(\Leftrightarrow6x^2+10x-6x-10=0\)
\(\Leftrightarrow6x^2+4x-10=0\)
Ta có \(\Delta=4^2+4.6.10=256,\sqrt{\Delta}=16\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-4+16}{12}=1\\x=\frac{-4-16}{12}=\frac{-5}{3}\end{cases}}\)
e mới lớp 5 nên chưa chắc ạ >:
\(2x\left(3x+5\right)-6x-10=0\)
\(=>6x^2+10x-6x-10=0\)
\(=>6x.\left(x-1\right)+10.\left(x-1\right)=0\)
\(=>\left(6x+10\right)\left(x-1\right)=0\)
\(=>\orbr{\begin{cases}6x+10=0\\x-1=0\end{cases}=>\orbr{\begin{cases}x=\frac{-10}{6}\\x=1\end{cases}}}\)
a: CH=16^2/24=256/24=32/3(cm)
BC=24+32/3=104/3cm
AC=căn 32/3*104/3=16/3*căn 13(cm)
b: BC=12^2/6=144/6=24cm
CH=24-6=18cm
AC=căn 18*24=12*căn 3(cm)
g: \(=\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)
h: \(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)
\(e,=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\\ f,=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\\ =\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)
\(g,=\dfrac{x}{x\left(x-2\right)}-\dfrac{x^2+4x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\\ =\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\\ h,=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)
1. ĐKXĐ: \(x\ne5\)
\(\dfrac{3x+1}{x-5}+\dfrac{-2x-6}{x-5}\)
\(=\dfrac{3x+1-2x-6}{x-5}\)
\(=\dfrac{x-5}{x-5}\)
\(=1\)
2. ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)
\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)
\(=\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2x-2}{\left(2x-2\right)\left(x+1\right)}\)
\(=\dfrac{1}{x+1}\)
Em cảm ơn nhìu ạ 😍❤️