Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12 : {390 : [500 - (125 + 35 . 7)]}
= 12 : {390 : [500 - (125 + 245)]}
= 12 : [390 : (500 - 370)]
= 12 : (390 : 130)
= 12 : 3
= 4
12 : { 390 : [ 500 - ( 125 + 35. 7 ) ] }
= 12 : { 390 : [ 500 - ( 125 + 245 ) ] }
= 12 : { 390 : [ 500 - 370 ] }
= 12 : { 390 : 130 }
= 12 : 3
= 4
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
Cảm ơn vì bn đã giúp. Nhưng bn có thể giải chi tiết cho mik đc ko ạ?
Do (x2-5).(x2-10)<0
suy ra :x2-5 và x2-10 trái dấu
+)với x2-5<0suy ra x2<5
và x2-10>0 suy ra x2>10
suy ra 10<x2<5 suy ra không tồn tại x
+)Với x2-5>0 suy ra:x2>5
Và x2-10 <0 suy ra:x2<10
suy ra 5<x2<10
suy ra x2 thuộc các số:6;7;8;9
+)Với x2=6 suy ra: x không tồn tại
+)VỚi x2=7 suy ra:x không tồn tại
+Với x2=8 suy ra: x không tồn tại
+)với x2=9 suy ra x=3 hoặc x=-3
Vậy x=3 hoặc x=-3
\(\left(x^2-5\right)\left(x^2-10\right)< 0\)
Th1 : \(\hept{\begin{cases}x^2-5< 0\\x^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2< 10\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 10\end{cases}}}\)
a: =-5/6-3/7=-35/42-18/42=-53/42
b: =2/5-4/9=18/45-20/45=-2/45
c: =-24/35
d: =2/3x-5/4=-10/12=-5/6
Lời giải:
Bổ sung điều kiện $x$ nguyên.
Ta có:
$2x+7\vdots x-2$
$\Rightarrow 2(x-2)+11\vdots x-2$
$\Rightarrow 11\vdots x-2$
$\Rightarrow x-2\in \left\{1; -1; 11; -11\right\}$
$\Rightarrow x\in \left\{3; 1; 13; -9\right\}$
Thi tự làm
bn ko lm thì thôi chứ nói thế lm j