K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017
  • có nghĩa khi
    Nếu thì
    Nếu a<0, b<0 thì
  • Tương tự như vậy ta có:
    Nếu a> 0, b> 0 thì
    Nếu a<0, b<0 thì
  • Ta có:
    Điều kiện để căn thức có nghĩa là hay Do đó:
    Nếu b>0 thì
    Nếu thì
  • Điều kiện để có nghĩa là hay
    Cách 1.
    =
    Cách 2. Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương:
  • Điều kiện để có nghĩa là hay xy>0.
    Do đó



18 tháng 8 2016

\(\sqrt{\frac{1}{600}}=\sqrt{\frac{6}{3600}}=\frac{\sqrt{6}}{\sqrt{3600}}=\frac{\sqrt{6}}{60}\)

\(\sqrt{\frac{11}{540}}=\sqrt{\frac{11}{36.15}}=\frac{1}{6}\sqrt{\frac{165}{15^2}}=\frac{1}{6}.\frac{\sqrt{165}}{15}=\frac{\sqrt{165}}{90}\)

\(\sqrt{\frac{3}{50}}=\sqrt{\frac{3}{25.2}}=\frac{1}{5}\sqrt{\frac{3}{2}}=\frac{1}{5}\sqrt{\frac{6}{4}}=\frac{1}{5}.\frac{\sqrt{6}}{2}=\frac{\sqrt{6}}{10}\)

\(\sqrt{\frac{5}{98}}=\sqrt{\frac{5}{49.2}}=\frac{1}{7}\sqrt{\frac{5}{2}}=\frac{1}{7}.\sqrt{\frac{10}{4}}=\frac{\sqrt{10}}{14}\)

\(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\left|1-\sqrt{3}\right|}{\sqrt{9.3}}=\frac{\sqrt{3}-1}{3\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{9}\)

 

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

mình đâu có hỏi tuổi của ai??????????????????

29 tháng 6 2018

Giải:

a) \(\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)

\(=\sqrt{\dfrac{b}{a}.\left(\dfrac{a}{b}\right)^2}\)

\(=\sqrt{\dfrac{b}{a}.\dfrac{a^2}{b^2}}\)

\(=\sqrt{\dfrac{a^2.b}{ab^2}}\)

\(=\sqrt{\dfrac{a}{b}}\)

Vậy ...

b) \(3xy\sqrt{\dfrac{2}{xy}}\)

\(=\sqrt{\dfrac{2.\left(3xy\right)^2}{xy}}\)

\(=\sqrt{\dfrac{2.9x^2y^2}{xy}}\)

\(=\sqrt{18xy}\)

Vậy ...

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Lời giải:

\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)

\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)

\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)

17 tháng 8 2016
  • \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\)
  • \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{5}\)
  • \(\frac{2\sqrt{3}-\sqrt{6}}{1-\sqrt{3}}=\frac{-\sqrt{6}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{6}\)
  • \(\frac{a-\sqrt{a}}{1-\sqrt{a}}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
  • \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)