Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n(n+1)}\) ; \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}=\frac{1}{n(n+1)}\)
\(b)A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(=(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})+(\frac{1}{11}-\frac{1}{12})\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
a) Ta có hiệu của chúng là:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(1\right)\)
Mặt khác, ta lại có tích của chúng là:
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)
Vậy tích của hai phân số này bằng hiệu của chúng (hiệu của phân số lớn trừ phân số nhỏ)
b) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
a)\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n-1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow\frac{1}{n\left(n+1\right)}=\frac{1}{n}.\frac{1}{n+1}\)
b) \(C=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}+\frac{1}{6}.\frac{1}{7}+\frac{1}{7}.\frac{1}{8}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}+0+0+0+0+0-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{4}{8}-\frac{1}{8}=\frac{4-1}{8}=\frac{3}{8}\)
b)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
\(B=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{5}-\frac{1}{12}\)
\(B=\frac{7}{60}\)
a) Ta có:
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\) ; \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{1\left(n+1\right)}\)
Vậy \(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)
b) \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{100-99}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
\(B=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(B=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(B=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}-\frac{1}{11}-\frac{1}{12}\)
\(B=\frac{1}{5}-\frac{1}{12}\)
\(B=\frac{7}{60}\)
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
c) x=-2 nha
d) =\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+......+\(\frac{1}{11.12}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+.....+\(\frac{1}{11}\)-\(\frac{1}{12}\)
=\(\frac{1}{5}\)-\(\frac{1}{12}\)= \(\frac{7}{60}\)
a) \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)
vậy \(\frac{1}{n}và\frac{1}{n+1}\)có hiệu và tích bằng nhau
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}\)
do có các cặp âm và dương nên gạch vậy A=\(\frac{1}{2}-\frac{1}{9}\)=\(\frac{7}{18}\)
B=\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}\)
cách lm tương tự câu A
vậy B= \(\frac{1}{4}-\frac{1}{11}\)=\(\frac{7}{44}\)