K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

\(m^2x+3x=m\left(4x+1\right)+3\)

\(\Leftrightarrow m^2x+3x=4mx+m+3\)

\(\Leftrightarrow x\left(m^2-4m+3\right)=m+3\)

\(\Leftrightarrow x\left(m-3\right)\left(m-1\right)=m+3\)

+) Nếu  \(m\ne1;3\)thì phương trình có nghiệm duy nhất  \(x=\frac{m+3}{\left(m-1\right)\left(m-3\right)}\)

+) Nếu m = 1 thì  \(pt\Leftrightarrow0x=4\)( vô lí )

\(\Rightarrow\) pt vô nghiệm

+) Nếu m = 3 thì  \(pt\Leftrightarrow0x=6\) ( vô lí )

\(\Rightarrow\)phương trình vô nghiệm

23 tháng 1 2022

Pt <=> 1 - x - 2mx = 0

<=> x(2m + 1) = 1

m = -1/2 --> vô nghiệm

m # -1/2 --> x = \(\dfrac{1}{2m+1}\)

30 tháng 12 2023

a: \(4x-2=m\left(mx-1\right)\)(1)

=>\(m^2x-m=4x-2\)

=>\(x\left(m^2-4\right)=m-2\)

=>x(m-2)(m+2)=m-2

TH1: m=2

Phương trình (1) sẽ trở thành \(x\left(2-2\right)\left(2+2\right)=2-2\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (1) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-2-2\)

=>0x=-4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (1) sẽ trở thành: \(x\left(m-2\right)\left(m+2\right)=m-2\)

=>x(m+2)=1

=>\(x=\dfrac{1}{m+2}\)

f: \(m^2x-3=4x-\left(m-1\right)\)(2)

=>\(m^2x-4x=-m+1+3\)

=>\(x\left(m^2-4\right)=-m+2\)

=>\(x\left(m-2\right)\left(m+2\right)=-\left(m-2\right)\)

TH1: m=2

Phương trình (2) sẽ trở thành: \(x\left(2-2\right)\left(2+2\right)=-\left(2-2\right)\)

=>0x=0(luôn đúng)

TH2: m=-2

Phương trình (2) sẽ trở thành: \(x\left(-2-2\right)\left(-2+2\right)=-\left(-2-2\right)\)

=>0x=4

=>\(x\in\varnothing\)

TH3: \(m\notin\left\{2;-2\right\}\)

Phương trình (2) sẽ là: x(m-2)(m+2)=-(m-2)

=>x(m+2)=-1

=>\(x=-\dfrac{1}{m+2}\)

g: \(m^3x-4=m^2+4mx-4m\)(3)

=>\(m^3x-4mx=m^2-4m+4\)

=>\(x\left(m^3-4m\right)=\left(m-2\right)^2\)

=>\(x\cdot m\cdot\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

TH1: m=2

Phương trình (3) sẽ trở thành: \(x\cdot2\cdot\left(2+2\right)\left(2-2\right)=\left(2-2\right)^2\)

=>0x=0(luôn đúng)

TH2: m=0

Phương trình (3) sẽ trở thành:

\(x\cdot0\cdot\left(0+2\right)\left(0-2\right)=\left(0-2\right)^2\)

=>0x=4

=>\(x\in\varnothing\)

TH3: m=-2

Phương trình (3) sẽ trở thành;

\(x\cdot\left(-2\right)\left(-2+2\right)\left(-2-2\right)=\left(-2-2\right)^2\)

=>0x=16

=>\(x\in\varnothing\)

TH4: \(m\notin\left\{0;2;-2\right\}\)

Phương trình (3) sẽ trở thành:

\(x\cdot m\left(m+2\right)\left(m-2\right)=\left(m-2\right)^2\)

=>\(x=\dfrac{\left(m-2\right)^2}{m\left(m+2\right)\left(m-2\right)}=\dfrac{m-2}{m\left(m+2\right)}\)

16 tháng 2 2023

Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.

19 tháng 2 2022

\(mx-x-m+2=0\)

\(x\left(m-1\right)=m-2\)

Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)

Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)

Vậy ...

15 tháng 1 2019

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\frac{m^2.\left(x+2-x+2\right)\left(x+2+x-2\right)}{8}-4x=m^2-2m+1+6m+3\)

\(\frac{8m^2x}{8}-4x=m^2+4m+4\)

\(x.\left(m-2\right)\left(m+2\right)=\left(m+2\right)^2\)

+) với m = 2 thì 0x = 4 ( vô nghiệm )

+) với m = -2 thì 0x = 0 ( vô số nghiệm )

+) với m \(\ne\)2 và -2 thì x có 1 nghiệm \(\frac{m+2}{m-2}\)