K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

a,ĐKXĐ:\(x\ge2\)

\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)

b,ĐKXĐ:\(x\in R\)

\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

c, ĐKXĐ:\(x\ge0\)

\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)

 

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

Đk: `1 <=x <=7`.

Đặt `sqrt(7-x) = a, sqrt(x-1) = b`.

Phương trình trở thành: `b^2+1 + 2a = 2b + ab + 1`.

`<=> b^2 + 2a = 2b + ab.`

`<=> b(b-2) = a(b-2)`

`<=> (b-a)(b-2) = 0`

`<=> a =b` hoặc `b = 2.`

`@ a = b => 7 - x = x - 1`

`<=> 8 = 2x <=> x = 4`.

`@ b = 2 => sqrt(x-1) = 2`

`<=> x - 1 = 4`

`<=> x = 5`.

Vậy `x = 4` hoặc `x = 5`.

\(\text{ĐKXĐ:}1\le x\le7\)

PT đã cho tương đương với:

\(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{x-1}.\sqrt{7-x}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{4;5\right\}\)

 

28 tháng 9 2017

a)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)

\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)

Vậy pt có một nghiệm duy nhất là \(x=-1\)

b)

\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)

Lập bảng xét dấu ra nhé ~^o^~

10 tháng 5 2018

a) ĐKXĐ: 1\(\le x\le7\)

phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)

Vậy S={5,4} là tập nghiệm của phương trình

10 tháng 5 2018

b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)

=> z^2-y^2=x^2-3x+2

pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0

đến đó tự làm tự đặt dkxd

8 tháng 8 2019

b,

+ Với \(x=0\) \(\Rightarrow PTVN\)

+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :

\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)

Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)

\(\Leftrightarrow t^2+18-16t+46=0\)

\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)

\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)

9 tháng 8 2019

cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))

14 tháng 8 2017

đặt \(\sqrt{7-x}=a\) , \(\sqrt{x-1}=b\)

rồi thay vào và ptđttnt

14 tháng 8 2017

ĐK: \(1\le x\le7\)

\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)

\(x-1+2\sqrt{7-x}-2\sqrt{x-1}-\sqrt{-x^2+8x-7}=0\)

Đặt \(\sqrt{x-1}=a;\sqrt{7-x}=b\left(a,b\ge0\right)\)

\(pt\Rightarrow a^2+2b-2a-ab=0\Leftrightarrow\left(a^2-ab\right)-\left(2a-2b\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a-2=0\\a=b\end{cases}}\)

TH1: \(a-2=0\Rightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(tm\right)\)

TH2: \(a=b\Rightarrow\sqrt{x-1}=\sqrt{7-x}\Rightarrow x=4\left(tm\right)\)

Vậy pt có 2 nghiệm x = 4 hoặc x = 5.

3 tháng 2 2019

x + 2√(7-x) = 2√(x -1) + √(-x²+8x-7) + 1
<=> x-1 + 2√(7-x) = 2√(x-1) + √(x-1)(7-x)
đk xác định: 1 ≤ x ≤ 7 (*)
pt <=> (x-1) - √(x-1)(7-x) + 2√(7-x) - 2√(x-1) = 0
<=> [√(x-1)-√(7-x)].√(x-1) - 2[√(x-1)-√(7-x)] = 0
<=> [√(x-1)-√(7-x)].[√(x-1)-2] = 0

* √(x-1) = 2 <=> x = 5 (thỏa (*))
* √(x-1) - √(7-x) = 0 <=> √(x-1) = √(7-x) <=> x - 1 = 7 - x
<=> x = 4 (thỏa (*))
Vậy pt có 2 nghiệm là: x = 4 hoặc x = 5