Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(y'=\left(cosx-sinx\right)e^x+\left(sinx+cosx\right)e^x=2.cosx.e^x\)
Đáp án A
Ta có 2 sin x cos x - 2 cos 2 x - 1 + sin x - cos x = 1
⇔ 2 cos x sin x - cos x + sin x - cos x = 0 ⇔ [ tan x = 1 ⇔ x = π 4 + k π cos x = - 1 2 = cos 2 π 3 ⇔ x = ± 2 π 3 + k 2 π .
e, \(\frac{4}{9}-\frac{7}{8}.x=\frac{-2}{3}\)
\(\frac{7}{8}.x=\frac{4}{9}-\frac{-2}{3}\)
\(\frac{7}{8}.x=\frac{-10}{9}\)
\(x=\frac{-10}{9}:\frac{7}{8}\)
\(x=\frac{-80}{63}\)
cos2x+5=2.(2−cosx)(sinx−cosx)cos2x+5=2.(2−cosx)(sinx−cosx)
⇔2.cos2x−1+5=2.(2.sinx−2.cosx−cosx.sinx+cos2x)⇔2.cos2x−1+5=2.(2.sinx−2.cosx−cosx.sinx+cos2x)
⇔cos2x+2=2.sinx−2.cosx−cosx.sinx+cos2x⇔cos2x+2=2.sinx−2.cosx−cosx.sinx+cos2x
⇔2.(sinx−cosx)−cosx.sinx=2⇔2.(sinx−cosx)−cosx.sinx=2
Đặt t=sinx−cosxt=sinx−cosx , khi đó ta có t2−12=(−cosx.sinx)t2−12=(−cosx.sinx)
pt ⇔2.t+t2−12=2⇔2.t+t2−12=2