Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(y'=\dfrac{-2}{2\sqrt{1-2x}}+\dfrac{2}{2\sqrt{1+2x}}=\dfrac{1}{\sqrt{1+2x}}-\dfrac{1}{\sqrt{1-2x}}\)
b. \(y'=\dfrac{\sqrt{x^2+1}-\dfrac{x\left(x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\dfrac{x^2+1-\left(x^2+x\right)}{\left(x^2+1\right)\sqrt{x^2+1}}=\dfrac{1-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)
a, \(\sqrt[3]{\dfrac{2x}{x+1}}.\sqrt[3]{\dfrac{x+1}{2x}}=2\)
⇔ \(\left\{{}\begin{matrix}1=2\\x\ne0\&x\ne-1\end{matrix}\right.\)
Phương trình vô nghiệm
b, x = \(\dfrac{8}{125}\)
1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)
2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)
3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)
4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)
\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)
5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)
\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học
a/ \(y'=\dfrac{\left(x^3+2\sqrt{x-1}\right)'\left(x-1\right)-\left(x-1\right)'\left(x^3+2\sqrt{x-1}\right)}{\left(x-1\right)^2}\)
\(y'=\dfrac{\left(2x^2+\dfrac{1}{\sqrt{x-1}}\right)\left(x-1\right)-x^3-2\sqrt{x-1}}{\left(x-1\right)^2}=\dfrac{x^3-2x^2-\sqrt{x-1}}{\left(x-1\right)^2}\)
b/ \(y'=\dfrac{\left(4x^3+2x-3\right)'\left(\sqrt{x^2+2}\right)-\left(\sqrt{x^2+2}\right)'\left(4x^3+2x-3\right)}{x^2+2}\)
\(y'=\dfrac{\left(12x^2+2\right)\sqrt{x^2+2}-\dfrac{x}{\sqrt{x^2+2}}\left(4x^3+2x-3\right)}{x^2+2}\) (ban tu rut gon nhe)
c/ \(y'=\dfrac{\left(x^3+x+1\right)'\left(x^3+x+1\right)}{\left|x^3+x+1\right|}=\dfrac{\left(3x^2+1\right)\left(x^3+x+1\right)}{\left|x^3+x+1\right|}\)
d/ \(y'=\dfrac{3x^2-24x^3}{2\sqrt{x^3-6x^4+7}}\)
e/ \(y'=\dfrac{\left(x^5+1\right)'\left(2-\sqrt{x^2+3}\right)-\left(x^5+1\right)\left(2-\sqrt{x^2+3}\right)'}{\left(2-\sqrt{x^2+3}\right)^2}\)
\(y'=\dfrac{5x^4\left(2-\sqrt{x^2+3}\right)+\left(x^5+1\right)\dfrac{x}{\sqrt{x^2+3}}}{\left(2-\sqrt{x^2+3}\right)^2}\)
a, \(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^2+y^2-xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left(16-2xy\right)\left(16-3xy\right)=70\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\3x^2y^2-40xy+93=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\\left[{}\begin{matrix}xy=\dfrac{31}{3}\\xy=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=4\\xy=\dfrac{31}{3}\end{matrix}\right.\)
Phương trình này vô nghiệm
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)
b, ĐK: \(xy>0\)
\(\left\{{}\begin{matrix}\sqrt{\dfrac{2x}{y}}+\sqrt{\dfrac{2y}{x}}=3\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{y}+\dfrac{2y}{x}+4=9\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2+y^2\right)=5xy\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(x-2y\right)=0\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\\x-y+xy=3\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}y=2x\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\2x^2-x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x\\\left(x+1\right)\left(2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=3\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x=2y\\x-y+xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2+y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
a: ĐKXĐ: \(\left(x+2\right)\left(x+3\right)>=0\)
=>\(\left[{}\begin{matrix}x>=-2\\x< =-3\end{matrix}\right.\)
\(y=\sqrt{\left(x+2\right)\left(x+3\right)}=\sqrt{x^2+5x+6}\)
=>\(y'=\dfrac{\left(x^2+5x+6\right)'}{2\sqrt{x^2+5x+6}}=\dfrac{2x+5}{2\sqrt{x^2+5x+6}}\)
y'>0
=>\(\dfrac{2x+5}{2\sqrt{x^2+5x+6}}>0\)
=>2x+5>0
=>\(x>-\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x>=-2
Đặt y'<0
=>2x+5<0
=>2x<-5
=>\(x< -\dfrac{5}{2}\)
Kết hợp ĐKXĐ, ta được: x<=-3
Vậy: Hàm số đồng biến trên \([-2;+\infty)\) và nghịch biến trên \((-\infty;-3]\)
b: ĐKXĐ: \(\dfrac{2x+1}{x-3}>=0\)
=>\(\left[{}\begin{matrix}x>3\\x< =-\dfrac{1}{2}\end{matrix}\right.\)
\(y=\sqrt{\dfrac{2x+1}{x-3}}\)
=>\(y'=\dfrac{\left(\dfrac{2x+1}{x-3}\right)'}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{\left(2x+1\right)'\left(x-3\right)-\left(2x+1\right)\left(x-3\right)'}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
=>\(y'=\dfrac{\dfrac{2\left(x-3\right)-2x-1}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}\)
\(=-\dfrac{\dfrac{7}{\left(x-3\right)^2}}{2\sqrt{\dfrac{2x+1}{x-3}}}< 0\forall x\) thỏa mãn ĐKXĐ, trừ x=-1/2 ra
=>Hàm số luôn đồng biến trên \(\left(3;+\infty\right);\left(-\infty;-\dfrac{1}{2}\right)\)
c:
ĐKXĐ: x>=-3
\(y=\left(x+1\right)\sqrt{x+3}\)
=>\(y'=\left(x+1\right)'\cdot\sqrt{x+3}+\left(x+1\right)\cdot\sqrt{x+3}'\)
=>\(y'=\sqrt{x+3}+\left(x+1\right)\cdot\dfrac{\left(x+3\right)'}{2\sqrt{x+3}}\)
=>\(y'=\sqrt{x+3}+\dfrac{x+1}{2\sqrt{x+3}}\)
=>\(y'=\dfrac{2x+6+x+1}{2\sqrt{x+3}}=\dfrac{3x+7}{2\sqrt{x+3}}\)
Đặt y'>0
=>3x+7>0
=>x>-7/3
Kết hợp ĐKXĐ, ta được: x>-7/3
Đặt y'<0
3x+7<0
=>x<-7/3
Kết hợp ĐKXĐ, ta được: \(-3< x< -\dfrac{7}{3}\)
Vậy: Hàm số đồng biến trên \(\left(-\dfrac{7}{3};+\infty\right)\) và nghịch biến trên \(\left(-3;-\dfrac{7}{3}\right)\)
d: \(y=\dfrac{x-1}{x^2+1}\)(ĐKXĐ: \(x\in R\))
=>\(y'=\dfrac{\left(x-1\right)'\left(x^2+1\right)-\left(x-1\right)\left(x^2+1\right)'}{\left(x^2+1\right)^2}\)
=>\(y'=\dfrac{x^2+1-2x\left(x-1\right)}{\left(x^2+1\right)^2}=\dfrac{-x^2+2x+1}{\left(x^2+1\right)^2}\)
Đặt y'>0
=>\(-x^2+2x+1>0\)
=>\(1-\sqrt{2}< x< 1+\sqrt{2}\)
Đặt y'<0
=>\(-x^2+2x-1< 0\)
=>\(\left[{}\begin{matrix}x>1+\sqrt{2}\\x< 1-\sqrt{2}\end{matrix}\right.\)
Vậy: hàm số đồng biến trên khoảng \(\left(1-\sqrt{2};1+\sqrt{2}\right)\)
hàm số nghịch biến trên khoảng \(\left(1+\sqrt{2};+\infty\right);\left(-\infty;1-\sqrt{2}\right)\)
Nhanh vậy, đã đạo hàm rồi
a/ \(y'=\dfrac{\left(2x+1\right)'\left(x+2\right)-\left(x+2\right)'\left(2x+1\right)}{\left(x+2\right)^2}\)
\(y'=\dfrac{2\left(x+2\right)-2x-1}{\left(x+2\right)^2}=\dfrac{2x-2x+3}{\left(x+2\right)^2}\)
\(y'=\dfrac{3}{\left(x+2\right)^2}=0\Rightarrow vo-nghiem\)
b/ \(y=\left(1-x\right)^{\dfrac{1}{2}}+\left(1+x\right)^{\dfrac{1}{2}}\Rightarrow y'=\dfrac{1}{2}\left(1-x\right)^{-\dfrac{1}{2}}+\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}=0\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1-x}}+\dfrac{1}{\sqrt{1+x}}=0\Leftrightarrow\dfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1-x^2}}=0\)
\(DKXD:-1< x< 1\)
\(\sqrt{1+x}+\sqrt{1-x}=0\Leftrightarrow1+x+1-x=-2\sqrt{1-x^2}\)
\(\Leftrightarrow\sqrt{1-x^2}=-1\Rightarrow vo-nghiem\)
Ủa sao vô nghiệm hết vậy chời :v?
cảm ơn c nha, c thấy mk học như bay k