K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2022

1)

<=> \(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

x= 0 

x = 3

2) <=> \(x\left(x-3\right)=4\)

=> \(x=\dfrac{4}{x}+3\)

 

11 tháng 4 2022

\(2,x^2-3x=4\)

\(\Leftrightarrow x^2-3x-4=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)

\(\Rightarrow\)Pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)

Vậy \(S=\left\{4;-1\right\}\)

\(3,x^4-5x^2+6=0\)

Đặt \(t=x^2\left(t\ge0\right)\)

Pt trở thành

\(t^2-5t+6=0\)

\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)

\(\Rightarrow\)Pt ó 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)

\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)

Vậy \(S=\left\{\pm\sqrt{3}\right\}\)

 

a: \(\Leftrightarrow x^2+x-6+2x-6=10x-20+50\)

\(\Leftrightarrow x^2+3x-12-10x-30=0\)

\(\Leftrightarrow x^2-7x-42=0\)

\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot\left(-42\right)=217>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{217}}{2}\\x_2=\dfrac{7+\sqrt{217}}{2}\end{matrix}\right.\)

b: \(\Leftrightarrow x^2-3x+5=-x^2+4\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};1\right\}\)

28 tháng 9 2021

1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)

\(\Leftrightarrow\left|x+5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)

2) \(ĐK:x\ge2\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)

3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)

\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

4) \(ĐK:x\ge0\)

\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)

18 tháng 8 2018

\(x^2-3x+1=\dfrac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}=0\\ \Leftrightarrow x^2-3x+1=-\dfrac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\\ \Leftrightarrow\left(x^2-3x+1\right)^2=\dfrac{1}{3}\left(x^4+x^2+1\right)\\ \Leftrightarrow x^4+9x^2+1-6x^3-6x+2x^2=\dfrac{1}{3}x^4+\dfrac{1}{3}x^2+\dfrac{1}{3}\\ \Leftrightarrow3x^4+27x^2+3-18x^3-18x+6x^2=x^4+x^2+1\\ \Leftrightarrow2x^4-18x^3+32x^2-18x+2=0\\ \Leftrightarrow x^4-9x^3+16x^2-9x+1=0\\ \Leftrightarrow\left(x^4-2x^3+x^2\right)-\left(7x^3-14x^2+7x\right)+\left(x^2-2x+1\right)=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)-7x\left(x^2-2x+1\right)+\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-7x+1\right)\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-7x+\dfrac{49}{4}-\dfrac{45}{4}\right)\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left[\left(x-\dfrac{7}{2}\right)^2-\dfrac{45}{4}\right]\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{7}{2}-\dfrac{3\sqrt{5}}{2}\right)\left(x-\dfrac{7}{2}+\dfrac{3\sqrt{5}}{2}\right)\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{2}-\dfrac{3\sqrt{5}}{2}=0\\x-\dfrac{7}{2}+\dfrac{3\sqrt{5}}{2}=0\\\left(x-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7+3\sqrt{5}}{2}\\x=\dfrac{7-3\sqrt{5}}{2}\\x=1\end{matrix}\right.\)

Vậy.....................

18 tháng 8 2018

@Akai Haruma

27 tháng 2 2018

(1) + rút y từ pt (2) thay vào pt (1), ta được pt bậc hai 1 ẩn x, dễ rồi, tìm x rồi suy ra y

(2) + (3)

+ pt nào có nhân tử chung thì đặt nhân tử chung (thật ra chỉ có pt (2) của câu 2 là có nhân từ chung)

+ trong hệ, thấy biểu thức nào giống nhau thì đặt cho nó 1 ẩn phụ

VD hệ phương trình 3: đặt a= x+y ; b= căn (x+1)

+ khi đó ta nhận được một hệ phương trình bậc nhất hai ẩn, giải hpt đó rồi suy ra x và y

17 tháng 4 2018

15

\(\dfrac{7}{x-2}\)+\(\dfrac{8}{x-5}\)=3 (x khác 2 khác 5)

\(\Leftrightarrow\)7*(x-5)+8(x-2)=3(x-2)(x-5)

\(\Leftrightarrow\)15x-51=3x^2-21x+30\(\Leftrightarrow\)3x^2-36x+81=0

\(\Leftrightarrow\)\(\begin{matrix}&\end{matrix}\)\(\left[{}\begin{matrix}9\\3\end{matrix}\right.\) tmđk

16\(\dfrac{x^2-3x+6}{x^2-9}\)=\(\dfrac{1}{x-3}\)(x khác +_3)

\(\Leftrightarrow\)x^2-3x+6=x+3

\(\Leftrightarrow\)x^2-4x+3=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}3loại\\1\end{matrix}\right.\)

vậy x=1 là nghiệm của pt

25 tháng 4 2018

17 \(\dfrac{3}{x^2-4}\) = \(\dfrac{1}{x-2}+\dfrac{1}{x+2}\)

<=> x + 2 + x - 2 = 3

<=> 2x = 3

<=> x = \(\dfrac{3}{2}\)

NV
1 tháng 3 2019

a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)

\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)

\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

NV
1 tháng 3 2019

b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)

\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)

\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

7 tháng 10 2021

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

7 tháng 10 2021

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)