K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

5.

\(4x^5y^2+8x^4y^3+4x^3y^4=4x^3y^2(x^2+2xy+y^2)\)

\(=4x^3y^2(x+y)^2\)

9.

\(4x^5y^2+16x^4y^2-6x^3y^2=2x^3y^2(2x^2+4x-3)\)

13.

\(-3x^4y+6x^3y-3x^2y=-3x^2y(x^2-2x+1)=-3x^2y(x-1)^2\)

17.

\(8x^3-8x^2y+2xy^2=2x(4x^2-4xy+y^2)\)

\(=2x[(2x)^2-2.2x.y+y^2]=2x(2x-y)^2\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

21.

\((a^2+4)^2-16a^2b^2=(a^2+4)^2-(4ab)^2\)

\(=(a^2+4-4ab)(a^2+4+4ab)\)

25.

\(100a^2-(a^2+25)^2=(10a)^2-(a^2+25)^2\)

\(=(10a-a^2-25)(10a+a^2+25)\)

\(=-(a^2-10a+25)(a^2+10a+25)=-(a-5)^2(a+5)^2\)

29.

\(25a^2b^2-4x^2+4x-1=25a^2b^2-(4x^2-4x+1)\)

\(=(5ab)^2-(2x-1)^2=(5ab-2x+1)(5ab+2x-1)\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

11 tháng 6 2015

5x2+2xy+y2-4x-40=0

<=>(x+y)2=4(10+x-x2)

<=>x+y=2\(\sqrt{10+x-x^2}\)

 

21 tháng 1 2019

( mik k ghi đề nhé bn)

a) (2x)^3 - y^3 + (2x)^3 + y^3 - 16x^3 + 16xy = 16

=>  8x^3 - y^3 + 8x^3 + y^3 - 16x^3 + 16xy = 16

=>  16xy = 16

=>  xy = 1

Vì x, y nguyên => x = 1, y = 1       hoặc x = -1, y = -1

mik xin lỗi nha, mik chỉ bt làm câu a

21 tháng 1 2019

uk thank bạn

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^