\(\sqrt{x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2019

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=y\ge0\)

\(x^2+2x+2=3x\sqrt{x+1}\Leftrightarrow x^2+2\left(x+1\right)=3x\sqrt{x+1}\Leftrightarrow x^2+2y^2=3xy\)

\(\Leftrightarrow x^2-3xy+2y^2=0\Leftrightarrow x^2-xy-2xy+2y^2=0\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{x+1}\\x=\sqrt{x+1}\end{cases}}\)

Đến đây đơn giản rồi bạn giải từng trường hợp là ra

30 tháng 3 2018

Tưởng bn lớp 5 ạ?? Sao lại đăng câu hỏi lp 9 ạ??:)

30 tháng 3 2018

minh lop 5 dang chi minh muon nick cua minh

23 tháng 7 2018

liên hợ thôi !

lớp 6 đã có phương trình đâu

NV
12 tháng 11 2018

TXĐ: \(x\ge0\)

Phương trình đã cho tương đương:

\(\dfrac{\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(\sqrt{2x+1}+\sqrt{3x}\right)}{\sqrt{2x+1}+\sqrt{3x}}=x-1\)

\(\Leftrightarrow\dfrac{2x+1-3x}{\sqrt{2x+1}+\sqrt{3x}}=x-1\Leftrightarrow\dfrac{-\left(x-1\right)}{\sqrt{2x+1}+\sqrt{3x}}=x-1\)

\(\Leftrightarrow\left(x-1\right)\left(1+\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}\right)=0\)

\(\Leftrightarrow x-1=0\) (do \(1+\dfrac{1}{\sqrt{2x+1}+\sqrt{3x}}>0\) \(\forall x\ge0\))

\(\Leftrightarrow x=1\)

12 tháng 11 2018

\(\sqrt{2x+1}-\sqrt{3x}=x-1\)

Điều kiện : x\(\ge0\)

\(\Leftrightarrow\sqrt{2x+1}=x-1+\sqrt{3x}\)

\(\Leftrightarrow\left(\sqrt{2x+1}\right)^2=\left(x-1+\sqrt{3x}\right)^2\)

\(\Leftrightarrow2x+1=\left(x-1\right)^2+2\left(x-1\right)\sqrt{3x}+3x\)

\(\Leftrightarrow2x+1=x^2-2x+1+2\left(x-1\right)\sqrt{3x}+3x\)

\(\Leftrightarrow2x+1-x^2-x-x-2\left(x-1\right)\sqrt{3x}=0\)

\(\Leftrightarrow-x^2+x-2\left(x-1\right)\sqrt{3x}=0\)

\(\Leftrightarrow-x\left(x-1\right)-2\left(x-1\right)\sqrt{3x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(-x-2\sqrt{3x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-x-2\sqrt[]{3x}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-\sqrt{x}\left(\sqrt{x}+2\sqrt{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-\sqrt{x}=0\\\sqrt{x}+2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\\sqrt{x}=-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x\in\varnothing\end{matrix}\right.\) Vậy pt tập nghiệm S={1;0}

1 tháng 11 2017

ĐKXĐ : \(4\le x\le6\)

Xét \(VP^2=6-x+x-4+2\sqrt{\left(6-x\right)\left(x-4\right)}=2+2\sqrt{\left(6-x\right)\left(x-4\right)}\)

Áp dụng bđt Cauchy ta có : \(2+2\sqrt{\left(6-x\right)\left(x-4\right)}\le2+6-x+x-4=4\)

\(\Rightarrow VP\le2\forall x\)(1)

Xét \(VT=x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\forall x\)(2)

Từ (1);(2) \(\Rightarrow VT\ge2\ge VP\)

Dấu "=" xảy ra \(\hept{\begin{cases}6-x=x-4\\\left(x-5\right)^2=0\end{cases}\Rightarrow x=5\left(TMĐKXĐ\right)}\)

Vậy nghiệm pt là x = 5