Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tập xác định Mọi \(x\ge1\)
Vậy \(\sqrt{3x}-\sqrt{x+1}=\sqrt{2x+3}-\sqrt{2x-2}\)
Bình phương 2 vế rút gọn được \(x^2-x-6=0\)
\(\Rightarrow\)\(x=3\)
2) Điều kiện xác định là \(\hept{\begin{cases}x-\frac{1}{4}\ge0\\2-2x\ge0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{x-\frac{1}{4}}=U\)\(\Rightarrow x=U^2+\frac{1}{4}\) Với điều kiện xác đinh trên thì \(U\ge0\) , thay vào phương trình gốc được
\(2\left(U^2+\frac{1}{4}\right)+\sqrt{U^2+\frac{1}{4}+U}-2=0\)
\(\Leftrightarrow2U^2+\sqrt{\left(U+\frac{1}{2}\right)^2}-\frac{3}{2}=0\)
\(\Leftrightarrow2U^2+\left(U+\frac{1}{2}\right)-\frac{3}{2}=0\)
Đến đây quá đơn giản vì đây là pt bậc 2 bình thường , kết hợp điều kiện xác định giải ta được
\(U=\frac{1}{2}\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
1) đặt đk rùi bình phương 2 vế là ok
2) \(pt\Leftrightarrow\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}+\frac{\sqrt{x+2}-\sqrt{x+4}}{x+2-x-4}+\frac{\sqrt{x+4}-\sqrt{x+6}}{x+4-x-6}=\frac{\sqrt{10}}{2}-1\)(ĐKXĐ : \(x\ge0\))
<=> \(\frac{\sqrt{x}-\sqrt{x+6}}{-2}=\frac{\sqrt{10}}{2}-1\)
<=> \(\frac{\sqrt{x+6}-\sqrt{x}}{2}=\frac{\sqrt{10}-2}{2}\)
<=> \(\sqrt{x+6}-\sqrt{x}=\sqrt{10}-2\)
<=> \(\sqrt{x+6}+2=\sqrt{10}+\sqrt{x}\)
đến đây bình phương 2 vế rùi giải bình thường nhé
Đăt \(t=\sqrt{\frac{x}{2x-1}}\) (1) , với \(t\ge0\) , ta được phương trình theo t như sau:
\(t+\frac{1}{t}=2\)
\(\Leftrightarrow t^2-2t+1=0\)
\(\Leftrightarrow\left(t-1\right)^2=0\)
\(\Leftrightarrow t=1\)
Thay vào (1) ta tìm được x = 1.
Chú ý đặt thêm các điều kiện để phương trình có nghĩa bạn nhé.
Điều Kiện: \(x\ne0;x\ne\frac{1}{2}\)
Nhận xét \(\frac{x}{2x-1}.\frac{2x-1}{x}=1\) Đặt \(\frac{x}{2x-1}=a\Rightarrow\frac{2x-1}{x}=\frac{1}{a}\)
\(\Rightarrow\sqrt{a}+\sqrt{\frac{1}{a}}=2\Rightarrow a+1=2\sqrt{a}\)
BP 2 vế PT \(\Rightarrow a^2+2a+1=4a\Leftrightarrow a^2-2a+1=0\)
\(\Leftrightarrow\left(a-1\right)^2=0\Rightarrow a=1\Rightarrow\frac{x}{2x-1}=1\)
\(\Leftrightarrow x=2x-1\Leftrightarrow x=1\)
a,
\(\Leftrightarrow\sqrt{1-x}=\frac{x-1}{\sqrt{6-x}+\sqrt{-5-2x}}\)
\(\Leftrightarrow-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\\-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\end{cases}}\)
b,tự nàm
c,
\(\Leftrightarrow64x^2-64x-64=64\sqrt{8x+1}\)
\(\Leftrightarrow\left(8x+1\right)^2=10\left(8x+1\right)+64\sqrt{8x+1}+55\)
đặt \(\sqrt{8x+1}=a\)
=>a4=10a2+64a+55
nhận thấy phương trình có dạng x4=ax2+bx+c
tìm số m sao cho b2-4(2m+a)(m2+c)=0
sau đó đưa về (x2+m)2=k2 với k là 1 số bất kì,sau đó giải ra
b)đk \(x\ge1\)
\(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}=\sqrt{\frac{\left(x+1\right)^2+x^2.\left(x+1\right)^2+x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{\left(x^2+x+1\right)^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\frac{x^2+x+1}{x+1}+\frac{x}{x+1}=x+1\)
\(\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=2013\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2013\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2013\)
\(\Leftrightarrow x+\left|x-2\right|=2014\)
giai 2 pt
pt1 x+x-2=2014
x=1008
pt2 x+2-x=2014(vô lý)
Pt a: Đk \(1< x\le6\)
\(\frac{\sqrt{6-x}-2x+3}{\sqrt{x-1}}=\sqrt{x-1}\Rightarrow\sqrt{6-x}-2x+3=x-1\)
\(\Leftrightarrow\sqrt{6-x}=3x-4\Rightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow6-x=9x^2-24x+16\Leftrightarrow9x^2-23x+10=0\)
\(\Leftrightarrow9x^2-18x-5x+10=0\Leftrightarrow9x\left(x-2\right)-5\left(x-2\right)=0\Leftrightarrow\left(9x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9x-5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{9}\left(Lọai\right)\\x=2\left(Thoả\right)\end{cases}}\)
Vậy \(S=\left\{2\right\}\)
Pt b :
Đk: \(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow\left|x\right|\ge2\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\left(x+1\right)\sqrt{x^2-4}=2x+2\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-4}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\sqrt{x^2-4}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(Lọai\right)\\\sqrt{x^2-4}=2\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4}=2\Rightarrow x^2-4=4\Leftrightarrow x^2=8\Leftrightarrow x=2\sqrt{2}\left(Thoả\right)\)
Vậy \(S=\left\{2\sqrt{2}\right\}\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
pro đâu hết rồi giải giúp em với
bình phương 2 vế hoặc liên hợp nghiệm bài này đẹp nên ko cần lo
X=1; X=2