K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow\dfrac{x-51}{9}-1+\dfrac{x-52}{8}-1=\dfrac{x-53}{7}-1+\dfrac{x-54}{6}-1\)

=>x-60=0

hay x=60

b: \(\Leftrightarrow\left(x-2\right)^2-3\left(x+2\right)=x-14\)

\(\Leftrightarrow x^2-4x+4-3x-6-x+14=0\)

\(\Leftrightarrow x^2-8x+12=0\)

=>(x-2)(x-6)=0

=>x=2(loại) hoặc x=6(nhận)

19 tháng 2 2017

a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)

\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

\(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)

\(\Rightarrow x+10=0\)

\(\Rightarrow x=-10\)

Vậy x = -10

b) \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)

\(\Rightarrow\left(\frac{x+43}{57}+1\right)+\left(\frac{x+46}{54}+1\right)=\left(\frac{x+49}{51}+1\right)+\left(\frac{x+52}{48}+1\right)\)

\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)

\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)

\(\Rightarrow\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)

\(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\ne0\)

\(\Rightarrow x+100=0\)

\(\Rightarrow x=-100\)

Vậy x = -100

19 tháng 2 2017

a.\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

=>\(\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)

<=> \(\frac{x+1+9}{9}+\frac{x+2+8}{8}=\frac{x+3+7}{7}+\frac{x+4+6}{6}\)

<=>\(\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)

<=> \(\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)

<=> \(\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

<=> x+10=0

<=> x=-10

Vậy tập nghiệm của phương trình trên là S=\(\left\{-10\right\}\)

b. \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)

=> \(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)<=>\(\frac{x+43+57}{57}+\frac{x+46+54}{54}=\frac{x+49+51}{51}+\frac{x+52+48}{48}\)

<=>\(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)

<=>\(\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)

<=>(x+100)\(\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)\)=0

<=>x+100=0

<=>x= -100

Vậy tập nghiệm của phương trình trên là S=\(\left\{-100\right\}\)

7 tháng 3 2020

MỌI NGƯỜI GIÚP MÌNH VỚI Ạ. AI NHANH MÌNH TICK NHA

10 tháng 3 2022

a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)

b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)

c, đk x khác - 2 ; 2 

\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)

\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)

Vậy pt vô nghiệm 

28 tháng 4 2022

a, 4x+1=13-2x <-->6x=12 <-->x=2

b, (2x-5)(x-4)=0 <-->x=5/2  hoặc x=4

c,Đề bài -->x(x-2)+6(x+2)=2x+12 -->x^2+2x=0 -->x=0  hoặc x=-2

d,|x-3|=9-2x -->TH1: x-3=9-2x -->x=x=4           TH2:3-x=9-2x -->x=6

 

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

29 tháng 3 2022

a) \(\dfrac{5x}{2x+2}+1=\dfrac{6}{x+1}\left(đk:x\ne-1\right)\)

\(\dfrac{5x+2x+2}{2x+2}=\dfrac{12}{2x+2}\)

\(7x+2=12\)

\(7x=10\)

\(x=\dfrac{10}{7}\left(TM\right)\)

29 tháng 3 2022

b) \(\dfrac{-48}{x^2-9}=\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}\left(đk:x\ne\pm3\right)\)

\(\left(x-3\right)^2-\left(x+3\right)^2=-48\)

\(x^2-6x+9-x^2-6x-9=-48\)

\(x^2-12x+48=0\)

\(\left(x-6\right)^2=-12\)

Vì \(\left(x-6\right)^2\ge0\forall x\)

\(\Rightarrow\) pt vô nghiệm

a) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)

\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30x}{30}+\dfrac{120}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)

\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)

\(\Leftrightarrow-24x+144=-5x+30\)

\(\Leftrightarrow-24x+5x=30-144\)

\(\Leftrightarrow-19x=-114\)

hay x=6

Vậy: S={6}

b) Ta có: \(\dfrac{4-5x}{6}=\dfrac{2\left(-x+1\right)}{2}\)

\(\Leftrightarrow2\cdot\left(4-5x\right)=12\left(-x+1\right)\)

\(\Leftrightarrow2-10x=-12x+12\)

\(\Leftrightarrow2-10x+12x-12=0\)

\(\Leftrightarrow2x-10=0\)

\(\Leftrightarrow2x=10\)

hay x=5

Vậy: S={5}

c) Ta có: \(\dfrac{-\left(x-3\right)}{2}-2=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow\dfrac{2\left(3-x\right)}{4}-\dfrac{8}{4}=\dfrac{5\left(x+2\right)}{4}\)

\(\Leftrightarrow6-2x-8=5x+10\)

\(\Leftrightarrow-2x+2-5x-10=0\)

\(\Leftrightarrow-7x-8=0\)

\(\Leftrightarrow-7x=8\)

hay \(x=-\dfrac{8}{7}\)

Vậy: \(S=\left\{-\dfrac{8}{7}\right\}\)

d) Ta có: \(\dfrac{7-3x}{2}-\dfrac{5+x}{5}=1\)

\(\Leftrightarrow\dfrac{5\left(7-3x\right)}{10}-\dfrac{2\left(x+5\right)}{10}=\dfrac{10}{10}\)

\(\Leftrightarrow35-15x-2x-10-10=0\)

\(\Leftrightarrow-17x+15=0\)

\(\Leftrightarrow-17x=-15\)

hay \(x=\dfrac{15}{17}\)

Vậy: \(S=\left\{\dfrac{15}{17}\right\}\)

1 tháng 2 2021

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}

a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22

⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30

⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30

⇔−24x+144=−5x+30⇔−24x+144=−5x+30

⇔−24x+5x=30−144⇔−24x+5x=30−144

⇔−19x=−114⇔−19x=−114

hay x=6

Vậy: S={6}

b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2

⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)

⇔2−10x=−12x+12⇔2−10x=−12x+12

⇔2−10x+12x−12=0⇔2−10x+12x−12=0

⇔2x−10=0⇔2x−10=0

⇔2x=10⇔2x=10

hay x=5

Vậy: S={5}

c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4

⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4

⇔6−2x−8=5x+10⇔6−2x−8=5x+10

⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0

⇔−7x−8=0⇔−7x−8=0

⇔−7x=8⇔−7x=8

hay x=−87x=−87

Vậy: S={−87}S={−87}

d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1

⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010

⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0

⇔−17x+15=0⇔−17x+15=0

⇔−17x=−15⇔−17x=−15

hay x=1517x=1517

Vậy: S={1517}

7 tháng 9 2023

\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=6\)

\(\Leftrightarrow-4x+13=6\)

\(\Leftrightarrow-4x=-7\)

\(\Leftrightarrow x=\dfrac{7}{4}\)

\(b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=10\)

\(\Leftrightarrow x^2+6x+9+16-x^2=10\)

\(\Leftrightarrow6x+25=10\)

\(\Leftrightarrow6x=-15\)

\(\Leftrightarrow x=-\dfrac{5}{2}\)

\(c,\left(x+4\right)^2+\left(1-x\right)\left(1+x\right)=7\)

\(\Leftrightarrow x^2+8x+16+1-x^2=7\)

\(\Leftrightarrow8x+17=7\)

\(\Leftrightarrow8x=-10\)

\(\Leftrightarrow x=-\dfrac{5}{4}\)

\(d,\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)

\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)

\(\Leftrightarrow-8x+20=6\)

\(\Leftrightarrow-8x=-14\)

\(\Leftrightarrow x=\dfrac{7}{4}\)

#\(Urushi\)