Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình:
a) x+1 /9 + x+2 /8 = x+3 /7 + x+4 /6
b) x+43 /57 + x+46 /54 = x+49 /51 + x+52 /48
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)
\(\Rightarrow\left(\frac{x+43}{57}+1\right)+\left(\frac{x+46}{54}+1\right)=\left(\frac{x+49}{51}+1\right)+\left(\frac{x+52}{48}+1\right)\)
\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
\(\Rightarrow\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)=0\)
Mà \(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\ne0\)
\(\Rightarrow x+100=0\)
\(\Rightarrow x=-100\)
Vậy x = -100
a.\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
=>\(\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
<=> \(\frac{x+1+9}{9}+\frac{x+2+8}{8}=\frac{x+3+7}{7}+\frac{x+4+6}{6}\)
<=>\(\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
<=> \(\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
<=> \(\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
<=> x+10=0
<=> x=-10
Vậy tập nghiệm của phương trình trên là S=\(\left\{-10\right\}\)
b. \(\frac{x+43}{57}+\frac{x+46}{54}=\frac{x+49}{51}+\frac{x+52}{48}\)
=> \(\frac{x+43}{57}+1+\frac{x+46}{54}+1=\frac{x+49}{51}+1+\frac{x+52}{48}+1\)<=>\(\frac{x+43+57}{57}+\frac{x+46+54}{54}=\frac{x+49+51}{51}+\frac{x+52+48}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}=\frac{x+100}{51}+\frac{x+100}{48}\)
<=>\(\frac{x+100}{57}+\frac{x+100}{54}-\frac{x+100}{51}-\frac{x+100}{48}=0\)
<=>(x+100)\(\left(\frac{1}{57}+\frac{1}{54}-\frac{1}{51}-\frac{1}{48}\right)\)=0
<=>x+100=0
<=>x= -100
Vậy tập nghiệm của phương trình trên là S=\(\left\{-100\right\}\)
a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)
b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)
c, đk x khác - 2 ; 2
\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)
\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
a, 4x+1=13-2x <-->6x=12 <-->x=2
b, (2x-5)(x-4)=0 <-->x=5/2 hoặc x=4
c,Đề bài -->x(x-2)+6(x+2)=2x+12 -->x^2+2x=0 -->x=0 hoặc x=-2
d,|x-3|=9-2x -->TH1: x-3=9-2x -->x=x=4 TH2:3-x=9-2x -->x=6
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
a) \(\dfrac{5x}{2x+2}+1=\dfrac{6}{x+1}\left(đk:x\ne-1\right)\)
\(\dfrac{5x+2x+2}{2x+2}=\dfrac{12}{2x+2}\)
\(7x+2=12\)
\(7x=10\)
\(x=\dfrac{10}{7}\left(TM\right)\)
a) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30x}{30}+\dfrac{120}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)
\(\Leftrightarrow-24x+144=-5x+30\)
\(\Leftrightarrow-24x+5x=30-144\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: S={6}
b) Ta có: \(\dfrac{4-5x}{6}=\dfrac{2\left(-x+1\right)}{2}\)
\(\Leftrightarrow2\cdot\left(4-5x\right)=12\left(-x+1\right)\)
\(\Leftrightarrow2-10x=-12x+12\)
\(\Leftrightarrow2-10x+12x-12=0\)
\(\Leftrightarrow2x-10=0\)
\(\Leftrightarrow2x=10\)
hay x=5
Vậy: S={5}
c) Ta có: \(\dfrac{-\left(x-3\right)}{2}-2=\dfrac{5\left(x+2\right)}{4}\)
\(\Leftrightarrow\dfrac{2\left(3-x\right)}{4}-\dfrac{8}{4}=\dfrac{5\left(x+2\right)}{4}\)
\(\Leftrightarrow6-2x-8=5x+10\)
\(\Leftrightarrow-2x+2-5x-10=0\)
\(\Leftrightarrow-7x-8=0\)
\(\Leftrightarrow-7x=8\)
hay \(x=-\dfrac{8}{7}\)
Vậy: \(S=\left\{-\dfrac{8}{7}\right\}\)
d) Ta có: \(\dfrac{7-3x}{2}-\dfrac{5+x}{5}=1\)
\(\Leftrightarrow\dfrac{5\left(7-3x\right)}{10}-\dfrac{2\left(x+5\right)}{10}=\dfrac{10}{10}\)
\(\Leftrightarrow35-15x-2x-10-10=0\)
\(\Leftrightarrow-17x+15=0\)
\(\Leftrightarrow-17x=-15\)
hay \(x=\dfrac{15}{17}\)
Vậy: \(S=\left\{\dfrac{15}{17}\right\}\)
a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22
⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+5x=30−144⇔−24x+5x=30−144
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: S={6}
b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2
⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)
⇔2−10x=−12x+12⇔2−10x=−12x+12
⇔2−10x+12x−12=0⇔2−10x+12x−12=0
⇔2x−10=0⇔2x−10=0
⇔2x=10⇔2x=10
hay x=5
Vậy: S={5}
c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4
⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4
⇔6−2x−8=5x+10⇔6−2x−8=5x+10
⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0
⇔−7x−8=0⇔−7x−8=0
⇔−7x=8⇔−7x=8
hay x=−87x=−87
Vậy: S={−87}S={−87}
d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1
⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010
⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0
⇔−17x+15=0⇔−17x+15=0
⇔−17x=−15⇔−17x=−15
hay x=1517x=1517
Vậy: S={1517}
a) Ta có: x+45−x+4=x3−x−22x+45−x+4=x3−x−22
⇔6(x+4)30−30x30+12030=10x30−15(x−2)30⇔6(x+4)30−30x30+12030=10x30−15(x−2)30
⇔6x+24−30x+120=10x−15x+30⇔6x+24−30x+120=10x−15x+30
⇔−24x+144=−5x+30⇔−24x+144=−5x+30
⇔−24x+5x=30−144⇔−24x+5x=30−144
⇔−19x=−114⇔−19x=−114
hay x=6
Vậy: S={6}
b) Ta có: 4−5x6=2(−x+1)24−5x6=2(−x+1)2
⇔2⋅(4−5x)=12(−x+1)⇔2⋅(4−5x)=12(−x+1)
⇔2−10x=−12x+12⇔2−10x=−12x+12
⇔2−10x+12x−12=0⇔2−10x+12x−12=0
⇔2x−10=0⇔2x−10=0
⇔2x=10⇔2x=10
hay x=5
Vậy: S={5}
c) Ta có: −(x−3)2−2=5(x+2)4−(x−3)2−2=5(x+2)4
⇔2(3−x)4−84=5(x+2)4⇔2(3−x)4−84=5(x+2)4
⇔6−2x−8=5x+10⇔6−2x−8=5x+10
⇔−2x+2−5x−10=0⇔−2x+2−5x−10=0
⇔−7x−8=0⇔−7x−8=0
⇔−7x=8⇔−7x=8
hay x=−87x=−87
Vậy: S={−87}S={−87}
d) Ta có: 7−3x2−5+x5=17−3x2−5+x5=1
⇔5(7−3x)10−2(x+5)10=1010⇔5(7−3x)10−2(x+5)10=1010
⇔35−15x−2x−10−10=0⇔35−15x−2x−10−10=0
⇔−17x+15=0⇔−17x+15=0
⇔−17x=−15⇔−17x=−15
hay x=1517x=1517
Vậy: S={1517}
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=6\)
\(\Leftrightarrow-4x+13=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
\(b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=10\)
\(\Leftrightarrow x^2+6x+9+16-x^2=10\)
\(\Leftrightarrow6x+25=10\)
\(\Leftrightarrow6x=-15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\)
\(c,\left(x+4\right)^2+\left(1-x\right)\left(1+x\right)=7\)
\(\Leftrightarrow x^2+8x+16+1-x^2=7\)
\(\Leftrightarrow8x+17=7\)
\(\Leftrightarrow8x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{4}\)
\(d,\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)
\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)
\(\Leftrightarrow-8x+20=6\)
\(\Leftrightarrow-8x=-14\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
#\(Urushi\)
a: \(\Leftrightarrow\dfrac{x-51}{9}-1+\dfrac{x-52}{8}-1=\dfrac{x-53}{7}-1+\dfrac{x-54}{6}-1\)
=>x-60=0
hay x=60
b: \(\Leftrightarrow\left(x-2\right)^2-3\left(x+2\right)=x-14\)
\(\Leftrightarrow x^2-4x+4-3x-6-x+14=0\)
\(\Leftrightarrow x^2-8x+12=0\)
=>(x-2)(x-6)=0
=>x=2(loại) hoặc x=6(nhận)