K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2021

Sửa lại đề bài là giải PT và biện luận nhé các bạn

26 tháng 9 2023

Mn giúp mik vs ạ

 

 

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

23 tháng 12 2022

2.

\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)

ĐKXĐ là :

\(a\ne0;-3;-2\)

Vs a = 1 ta có:

=> P=3

1.

\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)

Câu 2: 

a: \(\Leftrightarrow a^3x-16ax-16a=4a^2+16\)

\(\Leftrightarrow x\left(a^3-16a\right)=4a^2+16a+16=\left(2a+4\right)^2\)

Để phương trình có vô nghiệm thì \(a\left(a-4\right)\left(a+4\right)=0\)

hay \(a\in\left\{0;4;-4\right\}\)

Để phương trình có nghiệm thì \(a\left(a-4\right)\left(a+4\right)< >0\)

hay \(a\notin\left\{0;4;-4\right\}\)

b: \(\Leftrightarrow m^2x+3mx-4x=m-1\)

\(\Leftrightarrow x\left(m^2+3m-4\right)=m-1\)

Để phương trình có vô số nghiệm thì m-1=0

hay m=1

Để phương trình vô nghiệm thì m+4=0

hay m=-4

Để phương trình có nghiệm duy nhất thì (m-1)(m+4)<>0

hay \(m\in R\backslash\left\{1;-4\right\}\)

1: \(\Leftrightarrow\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=3+x^2-x-2\)

\(\Leftrightarrow x^2-x+1=x^2-4+3x+3=x^2+3x-1\)

=>-4x=-2

hay x=1/2

2: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

\(\Leftrightarrow2x^2+23x+61=2x^2+2x+11\)

=>21x=-50

hay x=-50/21

3: \(\Leftrightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)

\(\Leftrightarrow6x-48+x^2-3x-10+18+x^2-13x+40=0\)

\(\Leftrightarrow2x^2-10x=0\)

=>2x(x-5)=0

=>x=0(nhận) hoặc x=5(loại)

a) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{1}{3x}+\dfrac{1}{2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{4}{12x}+\dfrac{6}{12x}=\dfrac{3x}{12x}\)

Suy ra: \(3x=10\)

\(\Leftrightarrow x=\dfrac{10}{3}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{10}{3}\right\}\)

b) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{3}{8x}-\dfrac{1}{2x}=\dfrac{1}{x^2}\)

\(\Leftrightarrow\dfrac{3x}{8x^2}-\dfrac{4x}{8x^2}=\dfrac{8}{8x^2}\)

Suy ra: \(3x-4x=8\)

\(\Leftrightarrow-x=8\)

hay x=-8(thỏa ĐK)

Vậy: S={-8}

c)ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{1}{2x}+\dfrac{3}{4x}=\dfrac{5}{2x^2}\)

\(\Leftrightarrow\dfrac{2x}{4x^2}+\dfrac{3x}{4x^2}=\dfrac{10}{4x^2}\)

Suy ra: 2x+3x=10

\(\Leftrightarrow5x=10\)

hay x=2(thỏa ĐK)

Vậy: S={2}

16 tháng 2 2021

d, \(\dfrac{2a}{x+a}=1\) (x \(\ne\) -a)

\(\Leftrightarrow\) \(\dfrac{2a}{x+a}-\dfrac{x+a}{x+a}=0\)

\(\Leftrightarrow\) \(\dfrac{a-x}{x+a}=0\)

\(\Leftrightarrow\) a - x = 0 (x + a \(\ne\) 0)

\(\Leftrightarrow\) x = a (TM)

Vậy S = {a}

Chúc bn học tốt!