K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

6)x- x3- 10x2+2x+4=0

<=>x- x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)

=>(x2-3x-2)(x2+2x-2)=0

Th1:x2-3x-2=0

denta(-3)2-(-4(1.2))=17

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)

Th2:x2+2x-2=0

denta:22-(-4(1.2))=12

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)

=>x=-căn bậc hai(3)-1,

x=3/2-căn bậc hai(17)/2,

x=căn bậc hai(3)-1,

x=căn bậc hai(17)/2+3/2

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

5 tháng 4 2016

khó thế

6 tháng 4 2016

\(3.\)  

Ta có:

\(x^2-9x-6\sqrt{x}+34=0\)

\(\Leftrightarrow\)  \(x^2-2.5.x+25+x-2.3.\sqrt{x}+9=0\)

\(\Leftrightarrow\)  \(\left(x-5\right)^2+\left(\sqrt{x}-3\right)^2=0\)  \(\left(3\right)\)

Mà  \(\left(x-5\right)^2\ge0;\)  \(\left(\sqrt{x}-3\right)^2\ge0\)  với  \(x\in R\)

nên  \(\left(3\right)\)  \(\Leftrightarrow\)  \(\left(x-5\right)^2=0;\)  và  \(\left(\sqrt{x}-3\right)^2=0\)

                \(\Leftrightarrow\)   \(x-5=0;\)  và  \(\sqrt{x}-3=0\)

                \(\Leftrightarrow\)   \(x=5;\)  và  \(x=9\)

Thay  \(x=5\)  vào vế trái của phương trình  \(\left(3\right)\), ta được:

\(VT=\left(5-5\right)^2+\left(\sqrt{5}-3\right)^2\ne0=VP\)  (vô lý!)

Tương tự với  \(x=9\), ta cũng có điều vô lý như ở trên.

Vậy, phương trình vô nghiệm, tức tập nghiệm của phương trình  \(S=\phi\)

6 tháng 4 2016

\(1.\)  Đặt biến phụ.

\(2.\)  Biến đổi phương trình tương đương:

\(\left(2\right)\)  \(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)=2.2016z-2016^2\)

         \(\Leftrightarrow\)  \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)-2.2016z+2016^2=0\)

         \(\Leftrightarrow\)  \(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+2yz+z^2\right)+\left(z^2-2.2016z+2016^2\right)=0\)

         \(\Leftrightarrow\)  \(\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y+z\right)^2+\left(z-2016\right)^2=0\)

         \(\Leftrightarrow\)  \(\left(x+y+1\right)^2+\left(y+z\right)^2+\left(z-2016\right)^2=0\)

Vì  \(\left(x+y+1\right)^2\ge0;\)  \(\left(y+z\right)^2\ge0;\)  \(\left(z-2016\right)^2\ge0\)  với mọi  \(x,y,z\in R\)

Do đó,   \(\left(x+y+1\right)^2=0;\)  \(\left(y+z\right)^2=0;\)  và  \(\left(z-2016\right)^2=0\)  

       \(\Leftrightarrow\)  \(x+y+1=0;\)  \(y+z=0;\)  và  \(z-2016=0\) 

       \(\Leftrightarrow\)  \(x=-y-1;\)  \(y=-z;\) và  \(z=2016\)

       \(\Leftrightarrow\)  \(x=2015;\)  \(y=-2016;\)  và  \(z=2016\)

29 tháng 1 2017

P.An hở

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

2 tháng 12 2017

Câu 1:

\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)

\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)

Bạn rút gọn sẽ còn lại:

\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)

2 tháng 12 2017

Câu 4:

\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

19 tháng 9 2019

Bài 1a/

\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)

\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)

Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)

Chiều về làm tiếp

19 tháng 9 2019

Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012

Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)

Bài 2: Dùng phân tích thành bình phương

\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)

\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)

Bài 3:

a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)

b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)