K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

ko bt đâu

15 tháng 4 2020

Tổng của hai số là 78, hiệu của hai số là 6. Tìm hai số đó ?

14 tháng 9 2017

a) căn(2x+5) - căn(3-x) = x2 -5x + 8 
Điều kiện : \(-\frac{5}{2}\Leftarrow x\Leftarrow3\)
căn(2x+5) - căn(3-x) = x^2-5x+8 
\(\Leftrightarrow\)[căn(2x+5)-3]-[căn(3-x)-1]=x-5x+6 
nhân liên hợp 
\(\Leftrightarrow\)(2x+5-9) / [căn(2x+5)+3] -(3-x-1) / [căn (3-x)+1]=(x-2)(x-3) 
\(\Leftrightarrow\)(2x-4) / [căn (2x+5)+3] -(2-x) /  [ căn (3-x)+1]-(x-2)(x-3)=0 
\(\Leftrightarrow\)(x-2).M=0 
\(\Leftrightarrow\)x=2 hoặc M=0 
M=2 / [căn(2x+5)+3]+1 / [căn(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

14 tháng 9 2017

 a)  căn(2x+5) - căn(3-x) = x^2-5x+8 
dkxd -5/2<=x<=3 
căn(2x+5) - căn(3-x) = x^2-5x+8 
<->[can(2x+5)-3]-[can(3-x)-1]=x^2-5x+6 
nhan lien hop 
<->(2x+5-9)/[can(2x+5)+3] -(3-x-1)/[can(3-x)+1]=(x-2)(x-3) 
<->(2x-4)/[can(2x+5)+3] -(2-x)/[can(3-x)+1]-(x-2)(x-3)=0 
<->(x-2).M=0 
<->x=2 hoac M=0 
M=2/[can(2x+5)+3]+1/[can(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

29 tháng 10 2021

\(PT\Leftrightarrow x^2-2x+\sqrt{6x^2-12x+7}=0\\ \Leftrightarrow x^2-2x+1+\sqrt{6x^2-12x+7}-1=0\\ \Leftrightarrow\left(x-1\right)^2+\dfrac{6\left(x-1\right)^2}{\sqrt{6x^2-12x+7}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}\right)=0\\ \Leftrightarrow x=1\left(x-1+\dfrac{6}{\sqrt{6x^2-12x+7}+1}>0\right)\)

29 tháng 10 2021

em cảm ơn 

19 tháng 11 2019

Đặt \(\sqrt{2x^2-8x+12}=a>0\)thì được

\(2\left(x^2-4x-6\right)=2\sqrt{2x^2-8x+12}\)

\(\Leftrightarrow2x^2-8x-12=2\sqrt{2x^2-8x+12}\)

\(\Rightarrow a^2-2a-24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=6\\a=-4\left(loai\right)\end{cases}}\)

\(\Rightarrow\sqrt{2x^2-8x+12}=6\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)

22 tháng 7 2016

ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(x^2-6x+26=6\sqrt{2x+1}\)

\(\Rightarrow2x+1-6\sqrt{2x+1}+x^2-8x+25=0\)

Đặt \(a=\sqrt{2x+1}\left(a\ge0\right)\), ta được pt: a2 - 6a + x2 - 8x + 25 = 0

Có: \(\Delta=36-4\left(x^2-8x+25\right)=-4x^2+32x-64=-4\left(x-4\right)^2\)\(\)

Vì \(\Delta< 0\) nên pt vô nghiệm

                                                                Vậy \(x\in\left\{\phi\right\}\)

22 tháng 7 2016

GT \(\Leftrightarrow x^2-6x+26-6\sqrt{2x+1}=0\)

       \(\Leftrightarrow2x+1-2\sqrt{2x+1}\times3+9+x^2-8x+16\)

       \(\Leftrightarrow\left(\sqrt{2x+1}-3\right)^2+\left(x-4\right)^2=0\)

suy ra x = 4