K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2015

Điều kiện: x \(\ge\frac{5}{3}\)

PT <=> \(\sqrt{8x+1}-\sqrt{7x+4}=\sqrt{2x-2}-\sqrt{3x-5}\)

<=> \(\frac{\left(8x+1\right)-\left(7x+4\right)}{\sqrt{8x+1}+\sqrt{7x+4}}=\frac{\left(2x-2\right)-\left(3x-5\right)}{\sqrt{2x-2}+\sqrt{3x-5}}\) <=> \(\frac{x-3}{\sqrt{8x+1}+\sqrt{7x+4}}=\frac{-\left(x-3\right)}{\sqrt{2x-2}+\sqrt{3x-5}}\)

<=> \(\frac{x-3}{\sqrt{8x+1}+\sqrt{7x+4}}+\frac{x-3}{\sqrt{2x-2}+\sqrt{3x-5}}=0\)

<=> \(\left(x-3\right)\left(\frac{1}{\sqrt{8x+1}+\sqrt{7x+4}}+\frac{1}{\sqrt{2x-2}+\sqrt{3x-5}}\right)=0\)

<=> x - 3 = 0 (Do  \(\frac{1}{\sqrt{8x+1}+\sqrt{7x+4}}+\frac{1}{\sqrt{2x-2}+\sqrt{3x-5}}>0\) với mọi x > =5/3)

<=> x = 3 ( T/m)

Vậy..............

9 tháng 11 2017

bạn sử dụng : \(\sqrt{x}\)= a <=>  a > hoặc bằng 0 

                                               và x= a^2

a: \(\Leftrightarrow2\sqrt{3x}+12-4x+5\sqrt{3}=0\)

\(\Leftrightarrow-4x+2\sqrt{3}\cdot\sqrt{x}+12+5\sqrt{3}=0\)

Đặt \(\sqrt{x}=a\left(a>=0\right)\)

Phương trình trở thành \(-4a^2+2\sqrt{3}a+12+5\sqrt{3}=0\)

\(\Delta=\left(2\sqrt{3}\right)^2-4\cdot\left(-4\right)\cdot\left(12+5\sqrt{3}\right)\)

\(=12+16\left(12+5\sqrt{3}\right)\)

\(=12+192+80\sqrt{3}=204+80\sqrt{3}\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{-2\sqrt{3}-\sqrt{204+80\sqrt{3}}}{-8}=\dfrac{2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{8}\left(nhận\right)\\a_2=\dfrac{-2\sqrt{3}+\sqrt{204+80\sqrt{3}}}{-8}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow a=\dfrac{2\sqrt{3}+2\sqrt{26+20\sqrt{3}}}{8}=\dfrac{\sqrt{3}+\sqrt{26+20\sqrt{3}}}{4}\)

\(\Leftrightarrow x=a^2\simeq5,66\)

c: \(\Leftrightarrow x\sqrt{2}+5\sqrt{2}-4x-5-4\sqrt{2}=0\)

\(\Leftrightarrow x\left(\sqrt{2}-4\right)+\sqrt{2}-5=0\)

\(\Leftrightarrow x=\dfrac{5-\sqrt{2}}{\sqrt{2}-4}=\dfrac{-18-\sqrt{2}}{14}\)

d: \(\Leftrightarrow\dfrac{7x+1-4x-4002}{2001}=\dfrac{3x+2}{2003}-1\)

\(\Leftrightarrow3x-4001=0\)

hay x=4001/3

NV
22 tháng 1 2022

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)

Phương trình trở thành:

\(a+b=\dfrac{a^2-b^2}{2}\)

\(\Leftrightarrow\left(a-b-2\right)\left(a+b\right)=0\)

\(\Leftrightarrow a-b-2=0\) (do \(a+b>0\))

\(\Leftrightarrow a=b+2\)

\(\Leftrightarrow\sqrt{2x^2+5x+12}=\sqrt{2x^2+3x+2}+2\)

\(\Leftrightarrow2x^2+5x+12=2x^2+3x+6+4\sqrt{2x^2+3x+2}\)

\(\Leftrightarrow x+3=2\sqrt{2x^2+3x+2}\) (\(x\ge-3\))

\(\Leftrightarrow x^2+6x+9=4\left(2x^2+3x+2\right)\)

\(\Leftrightarrow7x^2+6x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)

22 tháng 1 2022

cảm ơn Thầy nhiều ạ

21 tháng 9 2019

Điều kiện : \(x\ge0\)

Ta có : \(\sqrt{3x+1}-\sqrt{2x+2}=2\sqrt{x}-\sqrt{x+3}\)

            \(\Leftrightarrow3x+1+2x+2-2\sqrt{6x^2-8x+2}=4x+x+3-4\sqrt{x^2+3x}\)

            \(\Leftrightarrow\sqrt{6x^2+8x+2}=2\sqrt{x^2+3x}\)

              \(\Leftrightarrow6x^2+8x+2=4\left(x^2+3x\right)\)

             \(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow x=1\)

Vậy nghiệm phương trình đã cho là : \(x=1\)

Chúc bạn học tốt !!!

26 tháng 7 2018

kuchiyose edo tensen 

26 tháng 7 2018

Thiên Đạo Pain bạn viết gì vậy ?????