Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(A=21\left(a+\frac{1}{b}\right)+3\left(b+\frac{1}{a}\right)=21a+\frac{21}{b}+3b+\frac{3}{a}\)
\(=(\frac{a}{3}+\frac{3}{a})+(\frac{7b}{3}+\frac{21}{b})+\frac{62}{3}a+\frac{2b}{3}\)
Áp dụng BĐT Cô-si:
\(\frac{a}{3}+\frac{3}{a}\geq 2\sqrt{\frac{a}{3}.\frac{3}{a}}=2\)
\(\frac{7b}{3}+\frac{21}{b}\geq 2\sqrt{\frac{7b}{3}.\frac{21}{b}}=14\)
Và do $a,b\geq 3$ nên:
\(\frac{62}{3}a\geq \frac{62}{3}.3=62\)
\(\frac{2b}{3}\geq \frac{2.3}{3}=2\)
Cộng tất cả những BĐT trên ta có:
\(A\geq 2+14+62+2=80\) (đpcm)
Dấu "=" xảy ra khi $a=b=3$
Câu 2:
Bình phương 2 vế ta thu được:
\((x^2+6x-1)^2=4(5x^3-3x^2+3x-2)\)
\(\Leftrightarrow x^4+12x^3+34x^2-12x+1=20x^3-12x^2+12x-8\)
\(\Leftrightarrow x^4-8x^3+46x^2-24x+9=0\)
\(\Leftrightarrow (x^2-4x)^2+6x^2+24(x-\frac{1}{2})^2+3=0\) (vô lý)
Do đó pt đã cho vô nghiệm.
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
ta có:
\(x\left(\sqrt{2011}+\sqrt{2010}\right)+y\left(\sqrt{2011}-\sqrt{2010}\right)=x\sqrt{2011}+x\sqrt{2010}+y\sqrt{2011}-y\sqrt{2010}\)
pt tương đương với:
\(\left(x+y\right)\sqrt{2011}+\left(x-y\right)\sqrt{2010}=\sqrt{2011^3}+\sqrt{2010^3}\)
vì x,y là số hữu tỉ nên
\(\hept{\begin{cases}\sqrt{2011}\left(x+y\right)=\sqrt{2011^3}\\\sqrt{2010}\left(x-y\right)=\sqrt{2010^3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=2011\\x-y=2010\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{4021}{2}\\y=\frac{1}{2}\end{cases}}\)
Nhân 2 vế với \(\left(x-\sqrt{2011+x^2}\right)\) ta được:
\(\left(x^2-2011-x^2\right)\left(y+\sqrt{2011+y^2}\right)=2001\left(x-\sqrt{2011+x^2}\right)\)
\(\Leftrightarrow-2011\left(y+\sqrt{2011+y^2}\right)=2011\left(x-\sqrt{2011+x^2}\right)\)
\(\Leftrightarrow y+\sqrt{2011+y^2}=\sqrt{2011+x^2}-x\)(1)
Tương tự nhân 2 vế với \(\left(y-\sqrt{2011+y^2}\right)\) ta được:
\(x+\sqrt{2011+x^2}=\sqrt{2011+y^2}-y\)(2)
Cộng (1) và (2) vế theo vế ta được:
\(x+y=-x-y\)
\(\Leftrightarrow2\left(x+y\right)=0\)
\(\Leftrightarrow x+y=0\)
\(\Leftrightarrow x=-y\)
\(\Rightarrow T=-y^{2011}+y^{2011}=0\)