K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

ĐK: \(x\ge8\)

Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)

\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)

\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)

\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)

\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)

Đặt \(b+1=c\text{ (}c\ge1\text{)}\)

\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)

\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)

\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)

\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)

Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được

\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)

\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)

\(\Leftrightarrow a=2\)

\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)

Kết luận: \(x=9\).

 

18 tháng 7 2017

a)\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow3\left(\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}\right)-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow\dfrac{6x^2}{\sqrt{2x^2+1}+1}-x\left(1+3x+8\sqrt{2x^2+1}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{6x}{\sqrt{2x^2+1}+1}-\left(1+3x+8\sqrt{2x^2+1}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\\dfrac{6x}{\sqrt{2x^2+1}+1}=1+3x+8\sqrt{2x^2+1}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{2x^2+1}\\b=3x\end{matrix}\right.\left(a>0\right)\) thì

\(pt\left(2\right)\Leftrightarrow\)\(\dfrac{2b}{a+1}=1+b+8a\)

\(\Rightarrow\left\{{}\begin{matrix}a=-17\\b=120\end{matrix}\right.;\left\{{}\begin{matrix}a=-8\\b=49\end{matrix}\right.;\left\{{}\begin{matrix}a=-5\\b=26\end{matrix}\right.;\left\{{}\begin{matrix}a=-2\\b=5\end{matrix}\right.;\left\{{}\begin{matrix}a=-0\\b=1\end{matrix}\right.\) (loại vì \(a>0\))

Hay pt vô nghiệm

18 tháng 7 2017

phần a liên hợp nhưng cx có yếu tố đặt ẩn là done r` nhé ;v còn phần b dg nghĩ có lẽ liên hợp nốt mà chủ thớt khó quá:v

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

NV
25 tháng 9 2020

ĐKXĐ: ...

\(\Leftrightarrow3x^3-9x^2+4+2\sqrt{x^3-3x^2+3}=0\)

Đặt \(\sqrt{x^3-3x^2+3}=t\ge0\Rightarrow x^3-3x^2=t^2-3\)

Pt trở thành:

\(3\left(t^2-3\right)+4+2t=0\)

\(\Leftrightarrow3t^2+2t-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\frac{5}{3}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^3-3x^2+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x-2\right)=0\)

21 tháng 9 2020

Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)

Phương trình trở thành:

\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)

\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)

21 tháng 9 2020

mình dùng cách khác nhé :((

\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)

\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)

\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)

\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)

\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)

rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok