Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Vậy PT sẽ thành
\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)
Bạn thay y xyz=2010 vào A ta được
A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1
suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1
A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1
Vay A=1
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)
\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)
\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)
\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)
\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)
\(\Leftrightarrow2015-x=0\)
\(\Leftrightarrow x=2015\)
KL : PT có nghiệm \(S=\left\{2015\right\}\)
Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1
\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1\)
\(=2012.\)
x=2011
=> 2010= x-1
A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1
= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1
= x+1
=(x-1)+2= 2010+2=2012
a) \(=-7\left(x^2-\frac{10}{7}x+\frac{2016}{7}\right)\)
\(=-7\left(x^2-2.\frac{5}{7}x+\frac{25}{49}+\frac{14087}{49}\right)\)
\(=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\)
ta có
\(\left(x-\frac{5}{7}\right)^2\ge0\)với mọi x
\(=>-7\left(x-\frac{5}{7}\right)^2\le0\)(nhân cả hai vế với -7)
\(=>-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)
trường hợp dấu "=" xảy ra khi và chỉ khi
\(\left(x-\frac{5}{7}\right)^2=0\)
\(=>x-\frac{5}{7}=0\)
\(=>x=\frac{5}{7}\)
vậy GTLN cảu biểu thức là \(-\frac{14087}{7}\) khi và chỉ khi x= \(\frac{5}{7}\)
x.x^4 nha