K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Lời giải:
a)

\(f(0)=\frac{-0}{2}+3=3\)

$f(1)=\frac{-1}{2}+3=\frac{5}{2}$

$f(-1)=\frac{-(-1)}{2}+3=\frac{7}{2}$

$f(2)=\frac{-2}{2}+3=2$

$f(6)=\frac{-6}{2}+3=0$

$f(\frac{1}{2})=\frac{-\frac{1}{2}}{2}+3=\frac{11}{4}$

b)

\(f(x)=2x-3\Rightarrow f(x+1)=2(x+1)-3=2x-1\)

Do đó: \(f(x+1)-f(x)=2x-1-(2x-3)=2\)

c)

\(f(2)=3.2-9=-3\)

\(f(-2)=3(-2)-9=-15\)

\(g(0)=3-2.0=3\)

\(g(3)=3-2.3=-3\)

NV
7 tháng 9 2020

Câu 1:

Hàm \(y=5x+1\) là hàm bậc nhất

Câu 2:

Hàm \(y=x\left(x+1\right)-\left(x-1\right)^2\) là hàm bậc nhất

Do \(y=x\left(x+1\right)-\left(x-1\right)^2=x^2+x-x^2+2x-1=3x-1\)

Câu 1: 

A,B,C là hàm số bậc nhất, còn D không phải

Câu 2: 

a: Đường thẳng c và d cắt y=-3x+2

b: Đường thẳng song song y=-3x+2 là y=-3x+2, y=-3x+4

c: \(\Leftrightarrow x-3=0\)

hay x=3

4 tháng 1 2022

c: ⇔x−3=0⇔x−3=0

hay x=3

a: =>(x-3)(x+1)=0

=>x=3 hoặc x=-1

b: =>x(x-3)=0

=>x=0 hoặc x=3

c: =>(x-5)(x+1)=0

=>x=5 hoặc x=-1

d: =>5x^2+7x-5x-7=0

=>(5x+7)(x-1)=0

=>x=1 hoặc x=-7/5

e: =>x^2-4=0

=>x=2 hoặc x=-4

h: =>x^2-4x+4-3=0

=>(x-2)^2=3

=>\(x=2\pm\sqrt{3}\)

22 tháng 3 2023

Thank 🥲

Đề ôn tập 1 Câu 1 a(1.5đ) , Tính giá trị biểu thức \(M=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2020+2021}\right)\) b(1.5đ), Cho 3 số thực x,y,z thỏa mãn 2xy+2yz+2zx=0 . Tính giả trị biểu thức S = \(\frac{yz}{8x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\left(x,y,z\ne0\right)\) Câu 2 a(3đ), Giải phương trình \(2x^2+5x-1=7\sqrt{x^3-1}\) b, (3đ)Giải hệ phương trình...
Đọc tiếp

Đề ôn tập 1

Câu 1 a(1.5đ) , Tính giá trị biểu thức \(M=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+2020+2021}\right)\)

b(1.5đ), Cho 3 số thực x,y,z thỏa mãn 2xy+2yz+2zx=0 . Tính giả trị biểu thức S = \(\frac{yz}{8x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}\left(x,y,z\ne0\right)\)

Câu 2 a(3đ), Giải phương trình \(2x^2+5x-1=7\sqrt{x^3-1}\)

b, (3đ)Giải hệ phương trình \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{y+1}+\sqrt{2-x}=\sqrt{3}\end{matrix}\right.\)

Câu 3 Cho tam giác ABC nhọn ,trực tâm H . Qua H kẻ 1 đường thẳng bất kì cắt AB ,AC tại D và E sao cho HD=HE. Vẽ MH vuông góc DE tại H ( M thuộc BC) . Chứng minh a, AH.MH=HE.MB (1,5đ) b, M là trung điểm BC (1.5đ)

Câu 4 a,(1,5đ) Tìm số tự nhiên n để A là số chính phương biết \(n^4+2n^3+2n^2+n+7\)

b,(1,5đ) Tìm các cặp số nguyên (x;y) thỏa \(x^4+2x^2=y^3\)

Câu 5 (2đ) Cho điểm A nằm ngoài đường tròn (O;R) .Vẽ các tiếp tuyến AB,AC với đường tròn (O) với B,C là các tiếp điểm . Vẽ cát tuyến ADE của đường tròn (O) và AD<AE tia AD nằm giữa 2 tia AO và AB . Gọi F là điểm đối xứng của D qua AO và H là giao điểm của EF và BC . Chứng minh A,O,H thẳng hàng .

Câu 6 a,(2đ) Cho x ,y,z>0 và \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2020\)

Tính GTNN của D = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

b,(1đ) Chứng minh rằng với mọi số nguyên n thì phân số B là phân số tối giản biết B = \(\frac{n^3+2n}{n^4+3n^2+1}\)

0
9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

29 tháng 2 2020

a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)

Vậy tập nghiệm của phương trình là \(S=ℝ\)

b) \(\left(3x+4\right)^2=4\left(x+3\right)\)

\(\Leftrightarrow9x^2+24x+16=4x+12\)

\(\Leftrightarrow9x^2+20x+4=0\)

\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)

c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)

d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)

Đặt \(t=x^2+3x+2\), ta có :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)

29 tháng 2 2020

e)Đề bài sai ! Mik sửa :

 \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

Đặt \(t=x^2-5x\), ta có :

       \(t^2+10t-24=0\)

\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)

f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)

Đặt \(t=x^2+x+1\), ta có :

    \(t\left(t+1\right)-12=0\)

\(\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(t=x^2+x\), ta có :

     \(t\left(t-2\right)-24=0\)

\(\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)

h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\), ta có :

     \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow t^2+2t-24=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)

1 tháng 11 2017

bài 1 : thay \(x=3;y=-1\) vào hàm số \(y=ax+5\)

ta có : \(y=ax+5\Leftrightarrow-1=a.3+5\Leftrightarrow3a=-6\Leftrightarrow a=\dfrac{-6}{3}=-2\)

bài 2 : a) hàm số \(y=-x+2\) nghịch biến ; hệ số \(\left\{{}\begin{matrix}a=-1< 0\\b=2\end{matrix}\right.\)

b) hàm số \(y=-5+7x\) đồng biến ; hệ số \(\left\{{}\begin{matrix}a=7>0\\b=-5\end{matrix}\right.\)

c) hàm số \(y=-3x\) nghịch biến ; hệ số \(\left\{{}\begin{matrix}a=-3< 0\\b=0\end{matrix}\right.\)

d) hàm số \(y=\sqrt{1-\sqrt{2}}\left(x+1\right)\Leftrightarrow y=\sqrt{1-\sqrt{2}}x+\sqrt{1-\sqrt{2}}\) đồng biến

hệ số \(\left\{{}\begin{matrix}a=\sqrt{1-\sqrt{2}}>0\\b=\sqrt{1-\sqrt{2}}\end{matrix}\right.\)

1 tháng 11 2017

Vừa mới học xong :

Bài 2 :

a ) \(y=-x+2=2-x\)

Để hàm số đồng biến thì : \(2-x>0\Rightarrow x< 2\)

Để hàm số nghịch biến thì : \(2-x< 0\Rightarrow x>2\)

b ) \(y=-5+7x=7x-5\)

Để hàm số đồng biến thì : \(7x-5>0\Rightarrow x>\dfrac{5}{7}\)

Để hàm số nghịch biến thì : \(7x-5< 0\Rightarrow x< \dfrac{5}{7}\)

Các câu sau tương tự