Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Rightarrow x^2-3=n^2\)
\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Leftrightarrow x^2-3=y^2\)
\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)
Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm
\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)
\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)
\(\Rightarrow y^2\le\dfrac{16}{3}\)
\(\Rightarrow y^2=\left\{1;4\right\}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)
- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)
- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)
Vậy \(\left(x;y\right)=\left(2;2\right)\)
Ta có: \(\left(x+2y\right)\left(3x+4y\right)=96\) ( x,y nguyên)
Lại có: \(3x+4y-\left(x+2y\right)=2x+2y\) ( chẵn)
=> 3x+4y , x+2y cùng chẵn hoặc cùng lẻ ( 1)
Mà (x+2y)(3x+4y)=96 chẵn
=> 3x+4y, x+2y cùng chẵn hoặc là một chẵn 1 lẻ ( 2)
Từ (1) và (2) => 3x+4y, x+2y cùng chẵn
Ta có bảng sau:
3x+4y | 48 | 2 | 24 | 4 | 16 | 6 | 12 | 8 |
x+2y | 2 | 48 | 4 | 24 | 6 | 16 | 8 | 12 |
x | 44 | -94 | 16 | -44 | 4 | -26 | -4 | -16 |
y | -21 | 71 | -6 | 34 | 1 | 21 | 6 | 14 |
Vậy ...
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)