K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

\(\left(3x-\frac{1}{2}\right)\left(-\frac{2}{3x+1}\right)=0\)

Để là như vầy hả

16 tháng 2 2016

\(\left(3x-\frac{1}{2}\right).\left(-\frac{2}{3x+1}\right)=0\)

\(\Rightarrow\frac{6x-1}{2}.\left(-\frac{2}{3x-1}\right)=0\)

\(\Rightarrow\frac{1-6x}{3x-1}=0\Rightarrow1-6x=0\Rightarrow6x=1\Rightarrow x=\frac{1}{6}\)

Vậy x = 1/6

26 tháng 1 2018

ta có:\(x^3+x^2+2x^2+2x+2x+2=0\)0

\(\Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x+1\right)=0\)

Do \(x^2+2x+2\ne0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

vậy phương trình trên có tập nghiệm là :S=(-1) 

9 tháng 4 2018

có ai giải cho đâu mà cảm ơn

9 tháng 4 2018

a, 3x-2=2x-3 <=> 3x-2x=-3+2 <=> x=-1

b, 2x+3=5x+9 <=> 5x-2x=3-9 <=> 3x=-6 <=> x=-2

c, 5-2x=7 <=> 2x=5-7 <=> 2x=-2 <=> x=-1

d, x(x+2)=x(x+3) <=> x^2 + 2x = x^2 + 3x <=> 3x-2x=0 <=> x=0

e, 

\(9x^2-1+\left(3x-1\right).\left(x+2\right)=0\)

\(\Leftrightarrow9x^2-1+3x^2+6x-x-2=0\)

\(\Leftrightarrow9x^2+3x^2+6x-x=0+1+2\)

\(\Leftrightarrow12x^2+5x=3\)

\(\Leftrightarrow12x^2+5x-3=0\)

\(\Leftrightarrow12x^2-4x+9x-3=0\)

\(\Leftrightarrow4x\left(3x-1\right)+3\left(3x-1\right)\)

\(\Leftrightarrow\left(4x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{4}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy tập nghiệm phương trình là S = \(\left\{\dfrac{-3}{4};\dfrac{1}{3}\right\}\)

18 tháng 2 2016

=>x^2-2x-x+2+|x-1|=0

=>(x-1)(x-2)+|x-1|=0

TH!:x>=1 thi tinh nhu binh thuong

TH2x<1 tinh nhu the not

Chac vay

2 tháng 8 2018

|x|+|x^2+3x|=

12 tháng 2 2020

\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)

\(\Leftrightarrow\)\(\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)

\(\Leftrightarrow\)\(6x^2-13x+6=6x^2+43x+7\)

\(\Leftrightarrow\)\(-56x=1\)

\(\Leftrightarrow\)\(x=\frac{-1}{56}\)

\(\Rightarrow\)\(S=\left\{-\frac{1}{56}\right\}\)

Study well !

6 tháng 3 2022

\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)

\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

 

14 tháng 4 2020

a, x3-3x2+3x-1=0                                                   b, (2x-5)2-(x+2)2=0                                    c, x2-x=3x-3

<=>x3-x2-2x2+2x+x-1=0                                         <=>(2x-5-x-2)(2x-5+x+2)=0                       <=>x2-x-3x+3=0

<=>(x3-x2)-(2x2-2x)+(x-1)=0                                   <=>(x-7)(3x-3)=0                                       <=>x2-4x+3=0

<=>x2(x-1)-2x(x-1)+(x-1)=0                                    <=>x-7=0 hoặc 3x-3=0                               <=>x2-x-3x+3=0

<=>(x-1)(x2-2x+1)=0                                              1, x-7=0                 2, 3x-3=0                       <=>(x2-x)-(3x-3)=0

<=>(x-1)(x-1)2=0                                                      <=>x=7                <=>x=1                          <=>x(x-1)-3(x-1)=0

<=>x-1=0                                                                Vậy TN của PT là S={7;1}                           <=>(x-1)(x-3)=0

<=>x=1                                                                                                                                       <=>x-1=0 hoặc x-3=0

Vậy tập nghiệm của phương trình là S={1}                                                                                1, x-1=0                      2, x-3=0

                                                                                                                                                     <=>x=1                       <=>x=3

                                                                                                                                                     Vậy TN của PT là S={1;3}

23 tháng 3 2020

\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=4\\2x=-1\\5x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\x=-\frac{1}{2}\\x=\frac{2}{5}\end{cases}}}\)

Vậy ...

23 tháng 3 2020

Ối ối nhầm rồi :(

\(\left(3x-4\right)\left(2x+1\right)\left(5x-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}3x-4=0\\2x+1=0\\5x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=4\Leftrightarrow x=\frac{4}{3}\\2x=-1\Leftrightarrow x=-\frac{1}{2}\\5x=2\Leftrightarrow x=\frac{2}{5}\end{cases}}}\)

Vậy ... là nghiệm của pt

2 tháng 4 2017

1.\(3x^2+12x-66=0\)

\(\Rightarrow\)\(3\left(x^2+4x+4\right)-78=0\)

\(\Rightarrow3\left(x+2\right)^2=78\)

\(\Rightarrow\left(x+2\right)^2=26\)

\(\Rightarrow x+2=\sqrt{26}\)hoặc \(x+2=-\sqrt{26}\)

\(\Rightarrow x=\sqrt{26}-2\)hoặc \(x=-\sqrt{26}-2\)