K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2022

\(a,3x-2\left(x-3\right)=0\\ \Leftrightarrow3x-2x+6=0\\ \Leftrightarrow x=-6\\ b,\left(x+1\right)\left(2x-3\right)=\left(2x-1\right)\left(x+5\right)\\ \Leftrightarrow2x^2+2x-3x-3=2x^2-x+10x-5\\ \Leftrightarrow2x^2-x-3=2x^2+9x-5\\ \Leftrightarrow10x-2=0\\ \Leftrightarrow x=\dfrac{1}{5}\\ c,ĐKXĐ:x\ne\pm1\\ \dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\\ \Leftrightarrow\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\\ \Leftrightarrow\dfrac{2x^2+2x-x^2+x-x^2+1}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Rightarrow3x+1=0\\ \Leftrightarrow x=-\dfrac{1}{3}\left(tm\right)\)

\(d,\left(2x+3\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{3}\end{matrix}\right.\\ e,ĐKXĐ:x\ne\pm2\\ \dfrac{x-2}{x+2}-\dfrac{3}{x-2}=\dfrac{2\left(x-11\right)}{x^2-4}\\ \Leftrightarrow\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x-22}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x^2-4x+4-3x-6-2x+22}{\left(x-2\right)\left(x+2\right)}=0\\ \Rightarrow x^2-9x+20=0\\ \Leftrightarrow\left(x^2-5x\right)-\left(4x-20\right)=0\\ \Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)\\ \Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

 

30 tháng 4 2020

bài 1: 

a) ĐKXĐ: x khác 0; x khác -1

 \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)

<=> \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)

<=> (x - 1)(x + 1) + 1 - 2x = x

<=> x^2 - 2x = x

<=> x^2 - 2x - x = 0

<=> x^2 - 3x = 0

<=> x(x - 3) = 0

<=> x = 0 hoặc x - 3 = 0

<=> x = 0 hoặc x = 0 + 3

<=> x = 0 (ktm) hoặc x = 3 (tm)

=> x = 3

b) ĐKXĐ: x khác +-3; x khác -7/2

\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)

<=> \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)

<=> 13(x + 3) + (x - 3)(x + 3) = 6(2x + 7)

<=> 13x + 30 + x^2 = 12x + 42

<=> 13x + 30 + x^2 - 12x - 42 = 0

<=> x - 12 + x^2 = 0

<=> (x - 3)(x + 4) = 0

<=> x - 3 = 0 hoặc x + 4 = 0

<=> x = 0 + 3 hoặc x = 0 - 4

<=> x = 3 (ktm) hoặc x = -4 (tm)

=> x = -4

c) ĐKXĐ: x khác +-1

\(\frac{x}{x-1}-\frac{2x}{\left(x-1\right)\left(x+1\right)}=0\)

<=> x(x + 1) - 2x = 0

<=> x^2 + x - 2x = 0

<=> x^2 - x = 0

<=> x(x - 1) = 0

<=> x = 0 hoặc x - 1 = 0

<=> x = 0 hoặc x = 0 + 1

<=> x = 0 (tm) hoặc x = 1 (ktm)

=> x = 0

d) \(\frac{x^2+2x}{x^2+1}-2x=0\)

<=> \(\frac{x\left(x+2\right)}{x^2+1}-2x=0\)

<=> x(x + 2) - 2x(x^2 + 1) = 0

<=> x^2 - 2x^3 = 0

<=> x^2(1 - 2x) = 0

<=> x^2 = 0 hoặc 1 - 2x = 0

<=> x = 0 hoặc -2x = 0 - 1

<=> x = 0 hoặc -2x = -1

<=> x = 0 hoặc x = 1/2

30 tháng 4 2020

bài 2: 

(x - 1)(x^2 + 3x - 2) - (x^3 - 1) = 0

<=> x^3 + 3x^2 - 2x - x^2 - 3x + 2 - x^2 + 1 = 0

<=> 2x^2 - 2x - 3x + 3 = 0

<=> 2x(x - 1) - 3(x - 1) = 0

<=> (2x - 3)(x - 1) = 0

<=> 2x - 3 = 0 hoặc x - 1 = 0

<=> 2x = 0 + 3 hoặc x = 0 + 1

<=> 2x = 3 hoặc x = 1

<=> x = 3/2 hoặc x = 1

bài 3:

(x^3 + x^2) + (x^2 + x) = 0

<=> x^3 + x^2 + x^2 + x = 0

<=> x^3 + 2x^2 + x = 0

<=> x(x^2 + 2x + 1) = 0

<=> x(x + 1)^2 = 0

<=> x = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = 0 - 1

<=> x = 0 hoặc x = -1

14 tháng 3 2020

a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> 1 - x + 3(x + 1) = 2x + 3

<=> 1 - x + 3x + 3 = 2x + 3

<=> 1 - x + 3x + 3 - 2x = 3

<=> 4 = 3 (vô lý)

=> pt vô nghiệm

b) ĐKXĐ: \(x\ne1;x\ne2\)

\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)

<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30

<=> -x + 4x2 - 14 = 15x - 30

<=> x - 4x2 + 14 = 15x - 30 

<=> x - 4x2 + 14 + 15x - 30 = 0

<=> 16x - 4x2 - 16 = 0

<=> 4(4x - x2 - 4) = 0

<=> -x2 + 4x - 4 = 0

<=> x2 - 4x + 4 = 0

<=> (x - 2)2 = 0

<=> x - 2 = 0

<=> x = 2 (ktm)

=> pt vô nghiệm 

c) xem bài 4 ở đây: Câu hỏi của gjfkm

d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)

\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)

<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)

<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)

<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10

<=> 2x2 - 14 = 2x2 + x - 10

<=> 2x2 - 14 - 2x2 = x - 10

<=> -14 = x - 10

<=> -14 + 10 = x

<=> -4 = x

<=> x = -4

14 tháng 4 2018

a) 2x - 6 = 0

2x = 6

x = 3

Vậy tâp nghiệm S = { 3 }

b) ( x + 2 ) ( 2x + 1 ) =0

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm S = { -2 ; -1/2 }

c) ( x + 2 ) ( 2x + 1 ) - ( 2x - 3 ) ( 2x + 1) = 0

( x + 2 - 2x + 3 ) ( 2x + 1 ) = 0

( -x + 5 ) ( 2x + 1 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\2x+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{1}{2}\end{cases}}\)

Vậy tập nghiệm S = { 5 ; -1/2 }

d) \(\frac{x+3}{x-5}-\frac{4}{x}=\frac{20}{x\left(x-5\right)}\)

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-5\right)}-\frac{4\left(x-5\right)}{x\left(x-5\right)}=\frac{20}{x\left(x-5\right)}\)với \(x\ne0;x\ne5\)

\(\Rightarrow x^2+3x-4x+20=20\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTMĐK\right)\\x=1\left(TMĐK\right)\end{cases}}\)

Vậy tập nghiệm S ={ 1 }

14 tháng 4 2018

a) 2x - 6 = 0

<=> 2x = 6

<=> x  = \(\frac{6}{2}\)= 3

b) (x+2).(2x+1) = 0

<=> x+2 = 0 => x = -2

      2x+1 = 0 => x = \(\frac{-1}{2}\)

c)(x+2)(2x+1)-(2x-3)(2x+1)=0

<=>(2x+1)(5-x)=0

<=> 2x+1 = 0 => x = \(\frac{-1}{2}\)

      5-x = 0  => x = 5

d) Đkxđ: x \(\ne\)5  ;  0   

Qui đồng và khử mẫu ta được:

         x\(^2\)+ 3x - 4x + 20 = 20

<=>  x\(^2\)+ x = 0

<=> x (x+1) = 0

<=> x = 0 (loại)

      x+1 = 0  => x= -1 (thỏa)

NV
3 tháng 4 2019

Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi

Bài 1:

a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)

\(\Leftrightarrow11-2x-3=3x-12\)

\(\Leftrightarrow5x=20\)

\(\Rightarrow x=4\)

b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)

\(\Leftrightarrow10x-15-20x+28=19-2x\)

\(\Leftrightarrow8x=-6\)

\(\Rightarrow x=-\frac{3}{4}\)

c/

\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)

\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)

\(\Leftrightarrow x=3\)

NV
3 tháng 4 2019

d/

\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow79x=158\)

\(\Rightarrow x=2\)

e/

\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)

\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)

\(\Leftrightarrow0=-121\) (vô lý)

Vậy pt vô nghiệm

f/

\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow6x=-5\)

\(\Rightarrow x=-\frac{5}{6}\)