K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

PT tích à, thế thì đến đây xoq r còn gì

Hoặc 3x+4=0 hoặc x+1=0 hoặc 6x+7=0

=> \(x\in\left\{-\frac{4}{3};-1;-\frac{7}{6}\right\}\)

14 tháng 10 2020

Đặt \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=0\)

TH1 : \(3x+4=0\Leftrightarrow x=-\frac{4}{3}\)

TH2 : \(x+1=0\Leftrightarrow x=-1\)

TH3 : \(6x+7=0\Leftrightarrow x=-\frac{7}{6}\)

9 tháng 2 2017

\(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)

\(\Rightarrow\left(6x+7\right)^2.2.\left(3x+4\right).6.\left(x+1\right)=72\)

\(\Rightarrow\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)

\(\Rightarrow\left(6x+7\right)^2\left(6x+7+1\right)\left(6x+7-1\right)=72\)

\(\Rightarrow\left(6x+7\right)^2\left[\left(6x+7\right)^2-1\right]=72\)

\(\Rightarrow\left(6x+7\right)^4-\left(6x+7\right)^2=72\)

\(\Rightarrow\left(6x+7\right)^4-9\left(6x+7\right)^2+8\left(6x+7\right)^2-72=0\)

\(\Rightarrow\left(6x+7\right)^2\left[\left(6x+7\right)^2-9\right]+8\left[\left(6x+7\right)^2-9\right]=0\)

\(\Rightarrow\left[\left(6x+7\right)^2+8\right]\left[\left(6x+7\right)^2-9\right]=0\)

\(\Rightarrow\left(6x+7\right)^2-9=0\)\(\left(6x+7\right)^2+8>0\) với mọi \(x\)

\(\Rightarrow\left(6x+7\right)^2=9\Rightarrow6x+7=3\) hoặc \(-3\)

\(\Rightarrow\left[\begin{matrix}6x+7=3\Rightarrow x=\frac{-2}{3}\\6x+7=-3\Rightarrow x=\frac{-5}{3}\end{matrix}\right.\)

\(\Rightarrow x=\frac{-2}{3};\frac{-5}{3}\)

PT tương đương

\(\left(x^2+7x+6\right)\left(x^2+5x+6\right)=\dfrac{-3x^2}{4}\)

Xét \(x=0\Rightarrow6.6=0\)(vô lý)

Xét \(x\ne0\). Ta chia 2 vế của PT cho \(x^2\ne0\). PT tương đương

\(\left(x+\dfrac{6}{x}+7\right)\left(x+\dfrac{6}{x}+5\right)=\dfrac{-3}{4}\)

Đặt \(x+\dfrac{6}{x}+5=t\)

PT\(\Leftrightarrow t\left(t+2\right)=\dfrac{-3}{4}\Leftrightarrow t^2+2t+1=\dfrac{1}{4}\)

\(\Leftrightarrow\left(t+1\right)^2=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}t+1=\dfrac{-1}{2}\\t+1=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-3}{2}\\t=\dfrac{-1}{2}\end{matrix}\right.\)

Đến đây bạn thay vào là tìm được nghiệm nhé.

 

b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)

\(\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)

16 tháng 10 2016

sao đề nhìn bá vậy bạn ...

16 tháng 10 2016

bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi

Ta có: \(\left\{{}\begin{matrix}2\left(x-y\right)+3x=1\\3x+2\left(x-y\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-2y=1\\5x-2y=7\end{matrix}\right.\)(Vô lý)

Vậy: Hệ phương trình vô nghiệm

4 tháng 7 2021

\(hpt\text{⇔}\left\{{}\begin{matrix}2x-2y+3x=1\\3x+2x-2y=7\end{matrix}\right.\)\(\text{⇔}\left\{{}\begin{matrix}5x-2y=1\\5x-2y=7\end{matrix}\right.\)

Ta thấy : \(\dfrac{5}{5}=\dfrac{-2}{-2}\ne\dfrac{1}{7}\)

Suy ra hệ phương trình vô nghiệm