\(\frac{x-2009-2010}{2008}+\frac{x-2008-2010}{2009}+\frac{x-2008-2009}{2010...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

\(\frac{x-2009-2010}{2008}+\frac{x-2008-2010}{2009}+\frac{x-2008-2009}{2010}=3\)

\(\Leftrightarrow\frac{x-2008-2009-2010}{2008}+\frac{x-2008-2009-2010}{2009}+\frac{x-2008-2009-2010}{2010}=0\)

\(\Leftrightarrow\left(x-2008-2009-2010\right)\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)=0\)

\(\Leftrightarrow x-6027=0\Leftrightarrow x=6027\)

28 tháng 4 2018

\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)

\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)

\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)

\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)

\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)

28 tháng 4 2018

x=-2011

14 tháng 3 2019

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

tự làm nốt~

14 tháng 3 2019

kudo shinichi làm sai ở chỗ:

\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé

11 tháng 2 2020
https://i.imgur.com/KDgoiE0.jpg
25 tháng 3 2018

\(\frac{x+1}{2011}+\frac{x+2}{2010}=\frac{x+3}{2009}+\frac{x+4}{2008}\Leftrightarrow\frac{x+1}{2011}+1+\frac{x+2}{2010}+1=\frac{x+3}{2009}+1+\frac{x+4}{2008}+1\)

\(\Leftrightarrow\frac{x+1}{2011}+\frac{2011}{2011}+\frac{x+2}{2010}+\frac{2010}{2010}=\frac{x+3}{2009}+\frac{2009}{2009}+\frac{x+4}{2008}+\frac{2008}{2008}\)

\(\Leftrightarrow\frac{x+1+2011}{2011}+\frac{x+2+2010}{2010}=\frac{x+3+2009}{2009}+\frac{x+4+2008}{2008}\)

\(\Leftrightarrow\frac{x+2012}{2011}+\frac{x+2012}{2010}=\frac{x+2012}{2009}+\frac{x+2012}{2008}\)

\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2012\right)\left(\frac{1}{2009}+\frac{1}{2008}\right)\)

\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}=0\right)\) 

mà 1/2011+1/2010-1/2009-1/2008 khác 0 

\(\Rightarrow x+2012=0\Rightarrow x=-2012\)

\(\left(3x-2\right)^2-x\left(9x-2\right)=24\Leftrightarrow9x^2-12x+4-9x^2+2x=24\)

\(\Leftrightarrow-10x+4=24\Leftrightarrow-10x=20\Leftrightarrow x=-2\)

25 tháng 3 2018

1;  Ta có : x+1/2011 + x+2/2010 = x+3/2009 + x+4/ 2008

Suy ra: 2+(x+1/2011 + x+2/2010 ) = 2+( x+3/2009 + x+4/2008)

suy ra ban tach 2=1+1 roi cong 1 voi  tưng phân số  trên nha  sẽ ra kết quả ngay thôi 

2; gợi ý nè : (3x-2)^2 =(3x)^2 + 2*3x*2+2^2

29 tháng 3 2020
https://i.imgur.com/xG3Mq3b.jpg
22 tháng 9 2019

Dễ thấy: \(2008^3+1>0\)\(2008^2-2007>0\)

Nên \(\frac{2008^3+1}{2008^2-2007}>0\Leftrightarrow A>0\)

và \(2009-2010< 0\)\(2009^3-1>0\)

\(\Rightarrow\frac{2009^3-1}{2009-2010}< 0\Leftrightarrow B< 0\)

Vậy A > B

6 tháng 2 2018

Ta có :

\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)

\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)

\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)

\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)

\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)

Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)

\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài 

Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)

14 tháng 7 2017

1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)

\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)

\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)

\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)

Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)

2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)

\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)

\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)

\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)

Vậy \(x=2003\)

3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)

\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)

\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)

Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)

\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)

Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)

\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)

Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)