Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x-2009=y\) khi đó phương trình trở thành:
\(\dfrac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow4y^2-4y-15=0\)
\(\Leftrightarrow\left(2y-5\right)\left(2y+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2,5\\y=-1,5\end{matrix}\right.\)
Đổi lại:\(y=x-2009\) ,ta được:
\(\left[{}\begin{matrix}x=2009+2,5=2011,5\\x=2009-1,5=2007,5\end{matrix}\right.\)
Vậy...
ĐKXĐ: \(x\ne2009\) ; \(x\ne2010\)
Đặt : a = \(2009-x\)
b = \(x-2010\)
⇒ a + b = -1 ⇒ a = - ( 1 + b )
⇒ Phương trình đã cho có dạng :
\(\dfrac{a^2+ab+b^2}{a^2-ab+b^2}=\dfrac{19}{49}\)
⇔ \(\dfrac{\left(1+b\right)^2-b\left(1+b\right)+b^2}{\left(1+b\right)^2+b\left(1+b\right)+b^2}\) \(=\dfrac{19}{49}\)
⇔ \(\dfrac{b^2+b+1}{3b^2+3b+1}\) \(=\dfrac{19}{49}\)
⇔ \(49b^2+49b+49=57b^2+57b+19\)
⇔ \(8b^2+8b-30=0\)
⇔ \(4b^2+4b-15=0\)
⇔ \(4b^2-6b+10b-15=0\)
⇔ \(2b\left(2b-3\right)+5\left(2b-3\right)=0\)
⇔ \(\left(2b-3\right)\left(2b+5\right)=0\)
⇔ \(\left[{}\begin{matrix}2b+5=0\\2b-3=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}b=\dfrac{-5}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-5}{2}+2010=2007,5\\x=\dfrac{3}{2}+2010=2011,5\end{matrix}\right.\)
Vậy ......
Đặt \(\left\{{}\begin{matrix}x-2010=a\\2009-x=b\end{matrix}\right.\)
Theo đề bài ta có:
\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{b^2+ab+a^2}{b^2-ab+a^2}=\dfrac{19}{49}\)
\(\Leftrightarrow19\left(b^2-ab+a^2\right)=49\left(b^2+ab+a^2\right)\)
\(\Leftrightarrow19b^2-19ab+19a^2-49b^2-49ab-49a^2=0\)
\(\Leftrightarrow-30a^2-68ab-30b^2=0\)
\(\Leftrightarrow-2\left(15a^2+34ab+15b^2\right)=0\)
\(\Leftrightarrow15a^2+34ab+15b^2=0\)
\(\Leftrightarrow15a^2+25ab+9ab+15b^2=0\)
\(\Leftrightarrow5a\left(3a+5b\right)+3b\left(3a+5b\right)=0\)
\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3a+5b=0\\5a+3b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\left(x-2010\right)+5\left(2009-x\right)=0\\5\left(x-2010\right)+3\left(2009-x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-6030+10045-5x=0\\5x-10050+6027-3x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+4015=0\\2x-4023=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4015\\2x=4023\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4015}{-2}=2007,5\\x=\dfrac{4023}{2}=2011,5\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=2007,5\\x=2011,5\end{matrix}\right.\)
Đặt a=(2009-x)2
b=(x-2010)2
Theo đề bài ta có
\(\dfrac{\text{a^2+ab+b^2}}{a^2-ab+b^2}=\dfrac{19}{49}\)
\(\text{49(a^2+ab+b^2)}=19\left(a^2-ab+b^2\right)\)
\(\text{30a^2+68ab+30b^2=0}\)
\(\text{15a^2+34ab+15b^2=0}\)
\(\text{15a^2+9ab+25ab+15b^2=0}\)
\(\text{3a(5a+3b)+5(3b+5a)=0}\)
\(\text{(5a+3b)(3a+5b)=0}\)
\(\left[{}\begin{matrix}3a+5b=0\\3b+5a=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3\left(2009-x\right)=5\left(x-2010\right)\\5\left(2009-x\right)=3\left(x-2010\right)\end{matrix}\right.\)
\(-8x=-6030-10045\) hay \(8x=-10050-6027\)
\(x\simeq2009\),375 hay \(x\simeq2009,625\)
Đặt x-2009=a\(\Leftrightarrow\dfrac{\left(x-2009\right)^2-\left(x-2009\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(x-2009\right)^2+\left(x-2009\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{a^2-a\left(a-1\right)+\left(a-1\right)^2}{a^2+a\left(a-1\right)+\left(a-1\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow\dfrac{a^2-a^2+a+a^2-2a+1}{a^2+a^2-a+a^2-2a+1}=\dfrac{19}{49}\)
=>\(\dfrac{a^2-a+1}{3a^2-3a+1}=\dfrac{19}{49}\)
=>49a^2-49a+49-57a^2+57a-19=0
=>-8a^2+8a+30=0
=>a=5/2 hoặc a=-3/2
=>x-2009=5/2 hoặc x-2009=-3/2
=>x=4023/2 hoặc x=4015/2
Đặt \(2009-x=t\Rightarrow x-2010=-\left(2009-x\right)-1=-t-1\)
Suy ra:
\(\frac{t^2+t\left(-t-1\right)+\left(-t-1\right)^2}{t^2-t\left(-t-1\right)+\left(-t-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{t^2-t\left(t+1\right)+\left(t+1\right)^2}{t^2+t\left(t+1\right)+\left(t+1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{t^2-t^2-t+t^2+2t+1}{t^2+t^2+t+t^2+2t+1}=\frac{19}{49}\)
\(\Leftrightarrow\frac{t^2+t+1}{3t^2+3t+1}=\frac{19}{49}\)
\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)
\(\Leftrightarrow8t^2+8t-30=0\)
\(\Leftrightarrow4t^2+4t-15=0\Leftrightarrow4t^2+4t+1=16\)
\(\Leftrightarrow\left(2t+1\right)^2=16\Leftrightarrow\left[{}\begin{matrix}2t+1=-4\\2t+1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2t=-5\\2t=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\frac{5}{2}\\t=\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2009-x=-\frac{5}{2}\\2009-x=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4023}{2}\\x=\frac{4015}{2}\end{matrix}\right.\)
Vậy \(S=\left\{\frac{4015}{2};\frac{4023}{2}\right\}\)
đkxđ với mọi x
đặt a=x2+x+1
\(\dfrac{a}{a+1}+\dfrac{a+1}{a+2}=\dfrac{7}{6}\)
<=> \(\dfrac{6a\left(a+2\right)}{6\left(a+1\right)\left(a+2\right)}+\dfrac{6\left(a+1\right)^2}{6\left(a+1\right)\left(a+2\right)}=\dfrac{7\left(a+1\right)\left(a+2\right)}{6\left(a+1\right)\left(a+2\right)}\)
=> 6a(a+2) +6(a+1)2 =7(a+1)(a+2)
<=> 6a2+12a +6a2 +12a+6 =a2 +21a+14
<=> 12a2 -a2+24a-21a+6-14=0
<=> 11a2+3a-8=0
<=> 11a2 +11a-8a-8=0
<=> (11a2 +11a)-(8a+8)=0
<=> 11a(a+1)-8(a+1)=0
<=> (a+1)(11a-8)=0
=> a=-1 và a=\(\dfrac{8}{11}\)
thay a=x2+x+1 ta đc
x2+x+1=-1
<=> x2+x+2 =0 (vô nghiệm)
và x2+x+\(\dfrac{3}{11}\) =0(vô nghiệm )
vậy pt trên vô nghiệm
c) \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\left(2\right)\)ĐKXĐ : x # 0
( 2) <=> \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(< =>8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right).\left(-2\right)=\left(x+4\right)^2\)
\(< =>8.\left[\left(x+\dfrac{1}{x}\right)^2-x^2-\dfrac{1}{x^2}\right]=\left(x+4\right)^2\)
\(< =>16=\left(x+4\right)^2\)
<=> x2 + 8x = 0
<=> x( x + 8) = 0
<=> x = 0 ( KTM ) hoặc x = - 8 ( TM )
Vậy,....
Bài 1: Tìm x biết: $\frac{\left(2009-x\right)^2+\left(2009-x\right..