K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Đặt \(\left\{{}\begin{matrix}x-2008=n\\2x+2009=h\\3x-2011=t\end{matrix}\right.\Rightarrow n+h+t=6x-2010\)

\(\Rightarrow pt\Leftrightarrow\dfrac{1}{n}+\dfrac{1}{h}=\dfrac{1}{n+h+t}-\dfrac{1}{t}\)

\(\Leftrightarrow\dfrac{n+h}{hn}=\dfrac{-\left(n+h\right)}{t\left(n+h+t\right)}\)

\(\Leftrightarrow\left(n+h\right)\left(\dfrac{1}{hn}+\dfrac{1}{t\left(n+h+t\right)}\right)=0\)

\(\Leftrightarrow\left(n+h\right)\dfrac{t\left(n+h+t\right)+hn}{hnt\left(n+h+t\right)}=0\)

\(\Leftrightarrow\dfrac{\left(n+h\right)\left(n+t\right)\left(t+h\right)}{hnt\left(n+h+t\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}n=-h\\n=-t\\t=-h\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x-2008=-\left(2x+2009\right)\\x-2008=-\left(3x-2011\right)\\3x-2011=-\left(2x+2009\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{4019}{4}\\x=\dfrac{2}{5}\end{matrix}\right.\)

15 tháng 4 2018

a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)

ĐK:\(x\ne0\)

\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)

15 tháng 4 2018

\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)

16 tháng 8 2017

\(\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right):\dfrac{456}{123}\)

\(=\dfrac{123}{456}\cdot\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\cdot\dfrac{123}{456}\)

\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}\right)-\left(\dfrac{2009}{2010}-\dfrac{1}{2011}\right)\right]\)

\(=\dfrac{123}{456}\left(\dfrac{2010}{2011}-\dfrac{2011}{2010}-\dfrac{2009}{2010}+\dfrac{1}{2011}\right)\)

\(=\dfrac{123}{456}\left[\left(\dfrac{2010}{2011}+\dfrac{1}{2011}\right)-\left(\dfrac{2011}{2010}+\dfrac{2009}{2010}\right)\right]\)

\(=\dfrac{123}{456}\left(1-2\right)\)

\(=-\dfrac{123}{456}\)

16 tháng 8 2017

Nguyen Tuong Vy Bạn định bá chủ toàn bộ câu hỏi ở đây à

7 tháng 4 2017

lời giải

a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)

(1)\(\Leftrightarrow\)

\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)

\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)

Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)

(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)

Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)

2 tháng 4 2017

\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ:\(x\ne2;x\ne-2\)

\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)

\(\Leftrightarrow\)\(9x+18=0\)

\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.

b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)

PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)

\(\Leftrightarrow9x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)

c,\(ĐKXĐ:x\ge2\)

Bình phương 2 vế ta được:

\(x^2-4-x^2+2x-1=0\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)

6 tháng 4 2017

a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)

ĐKXĐ: \(x>1\)

\(3x^2+1=4\)

\(3x^2=3\)

\(x^2=1\)

\(x=\pm1\)

=> Pt vô nghiệm

 

6 tháng 4 2017

b) ĐKXĐ: x>-4

\(x^2+3x+4=x+4\)

\(x^2+2x=0\)

\(x\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=0\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)

15 tháng 4 2017

a)

<=> f(x) = .

Xét dấu của f(x) ta được tập nghiệm của bất phương trình:

T = ∪ [3; +∞).

b)

<=> f(x) = = .

f(x) không xác định với x = ± 1.

Xét dấu của f(x) cho tập nghiệm của bất phương trình:

T = (-∞; - 1) ∪ (0; 1) ∪ (1; 3).

c) <=> f(x) =

= .

Tập nghiệm: \(\left(-12;-4\right)\cup\left(-3;0\right)\).

7 tháng 4 2017

a) <=>

<=>

<=> 6(3x + 1) - 4(x - 2) - 3(1 - 2x) < 0

<=> 20x + 11 < 0

<=> 20x < - 11

<=> x <

b) <=> 2x2 + 5x – 3 – 3x + 1 ≤ x2 + 2x – 3 + x2 - 5

<=> 0x ≤ -6.

Vô nghiệm.

2 tháng 4 2017

a) \(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x+\dfrac{x+5}{x+3}=\dfrac{x+5}{x+3}\)

\(\Leftrightarrow x=0\)

b) \(2x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+x+\dfrac{3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x\left(x-1\right)+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow x+\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x}{x-1}-x\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x\left(x-1\right)}{x-1}\)

\(\Leftrightarrow\dfrac{x^2-x+3}{x-1}=\dfrac{3x-x^2+x}{x-1}\)

\(\Leftrightarrow x^2-x+3=3x-x^2+x\) ( điều kiện \(x\ne1\) )

\(\Leftrightarrow2x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(\Delta=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=1\left(loại\right)\end{matrix}\right.\)

Vậy \(x=\dfrac{3}{2}\)

c) \(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\)

\(\Leftrightarrow x^2-4x-2=\sqrt{\left(x-2\right)^2}\) ( điều kiện \(x>2\) )

\(\Leftrightarrow x^2-4x-2=x-2\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\end{matrix}\right.\)

Vậy \(x=5\)

d) \(\dfrac{2x^2-x-3}{\sqrt{2x-3}}=\sqrt{2x-3}\)

\(\Leftrightarrow2x^2-x-3=\sqrt{\left(2x-3\right)^2}\) ( điều kiện \(x>\dfrac{3}{2}\) )

\(\Leftrightarrow2x^2-x-3=2x-3\)

\(\Leftrightarrow2x^2-3x=0\)

\(\Leftrightarrow x\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\dfrac{3}{2}\left(loại\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

8 tháng 4 2017

a) 6x + < 4x + 7 <=> 6x - 4x < 7 - <=> x <

< 2x +5 <=> 4x - 2x < 5 - <=> x <

Tập nghiệm của hệ bất phương trình:

Y = = .

b) 15x - 2 > 2x + <=> x >

2(x - 4) < <=> x < 2

Tập nghiệm S = ∩ (-∞; 2) =