Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
gợi ý nha (mik lm còn j là hok nx ) (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc
Muốn chứng minh được ta phải chứng minh vế trái
(x2+bx+ax+ab)(x+c)=x3+ax2+bx2+cx2+abx+bcx+acx+abc
x3+ax2+bx2+cx2+abx+bcx+acx+abc=x3+ax2+bx2+cx2+abx+bcx+acx+abc(1)
Vì hai biểu thức trên (1) giông nhau
Do đó (x+a)(x+b)(x+c)=x2+(a+b+c)x2+(ab+bc+ac)x+abc
\(ĐK:x\ne\pm1\)
\(\dfrac{5x+3}{x-1}+\dfrac{3x}{x+1}=\dfrac{9x-4}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{\left(5x+3\right)\left(x+1\right)+3x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{9x-4}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow\left(5x+3\right)\left(x+1\right)+3x\left(x-1\right)=9x-4\)
\(\Leftrightarrow5x^2+5x+3x+3+3x^2-3x-9x+4=0\)
\(\Leftrightarrow8x^2-4x+7=0\)
Vậy pt vô nghiệm
\(\Leftrightarrow\left(5x+3\right)\left(x+1\right)+3x\left(x-1\right)=9x-4\)
\(\Leftrightarrow5x^2+5x+3x+3+3x^2-3x-9x+4=0\)
\(\Leftrightarrow8x^2-4x+7=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot8\cdot7=-208< 0\)
Do đó: Phương trình vô nghiệm
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)