Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
...
\(x^2-3x+2+\left|x-1\right|=0\)
\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)
\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)
a)(3x-1)(4x-8)=0
⇔3x-1=0 hoặc 4x-8=0
1.3x-1=0⇔3x=1⇔x=1/3
2.4x-8=0⇔4x=8⇔x=2
phương trình có 2 nghiệm:x=1/3 và x=2
b)(x-2)(1-3x)=0
⇔x-2=0 hoặc 1-3x=0
1.x-2=0⇔x=2
2.1-3x=0⇔-3x=1⇔x=-1/3
phương trình có 2 nghiệm:x=2 và x=-1/3
c)(x-3)(x+4)-(x-3)(2x-1)=0
⇔(x+4)(2x-1)=0
⇔x+4=0 hoặc 2x-1=0
1.x+4=0⇔x=-4
2.2x-1=0⇔2x=1⇔x=1/2
phương trình có hai nghiệm:x=-4 và x=1/2
d)(x+1)(x+2)=2x(x+2)
⇔(x+1)(x+2)-2x(x+2)=0
⇔2x(x+1)=0
⇔2x=0 hoặc x+1=0
1.2x=0⇔x=0
2.x+1=0⇔x=-1
phương trình có 2 nghiệm:x=0 và x=-1
\(3x\left(x+2\right)=\left(x+2\right)^2\\ \Leftrightarrow3x\left(x+2\right)-\left(x+2\right)^2=0\\ \Leftrightarrow\left(x+2\right)\left(3x-x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{-2;1\right\}\)
\(3x\left(x+2\right)=\left(x+2\right)^2\\ \Leftrightarrow3x\left(x+2\right)=\left(x+2\right)\left(x+2\right)\\ \Leftrightarrow3x\left(x+2\right)-\left(x+2\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-\left(x+2\right)\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy : \(S=\left\{-2,1\right\}\)
Sửa lại \(\left(12x+7\right)^2.\left(3x+2\right).\left(2x+1\right)=3\)
\(\Leftrightarrow\left(12x+7\right)^2.4\left(3x+2\right).6\left(2x+1\right)=72\)
\(\Leftrightarrow\left(12x+7\right)^2.\left(12x+8\right).\left(12x+6\right)=72\)
Đặt \(12x+7=y\) , thế vào phương trình trên ta có:
\(y^2.\left(y+1\right).\left(y-1\right)=72\)\(\Leftrightarrow y^4-y^2=72\)
\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^2-9=0\\y^2+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\pm3\\y^2=-8\end{matrix}\right.\Leftrightarrow y=\pm3\)vì \(y^2\ge0\)
Nếu \(y=3\Leftrightarrow12x+7=3\Leftrightarrow x=-\dfrac{1}{3}\)
Nếu \(y=-3\Leftrightarrow12x+7=-3\Leftrightarrow x=-\dfrac{5}{6}\)
(3x-2)(3x-1)=(3x+1)2
<=> 9x2-3x-6x+2=9x2+6x+1
<=> 9x2-9x+2-9x2-6x-1=0
<=> -15x+1=0
<=> -15x=-1
<=> \(x=\frac{1}{15}\)