K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(2x^2+3xy+y^2=0\)

\(\Rightarrow2x^2+2xy+xy+y^2=0\)

\(\Rightarrow2x\left(x+y\right)+y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(2x+y\right)=0\)

16 tháng 7 2019

     \(2x^2+3xy+y^2=0\)

\(\Leftrightarrow x^2+x^2+2xy+xy+y^2=0\)

\(\Leftrightarrow\left(x^2+xy\right)+\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow x\left(x+y\right)+\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\)

Hoặc \(x+y=0\Leftrightarrow x=-y\left(1\right)\)

Hoặc \(2x+y=0\left(2\right)\)

Thế (1) vào (2) ta có: 

\(-2y+y=0\)

\(\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Leftrightarrow x=0\left(\text{vì x = -y}\right)\)

Vậy \(x=y=0\)

16 tháng 7 2019

b) (x+1)(x+7)(x+3)(x+5)+15=0

=> (x^2+7x+x+7)(x^2+5x+3x+15)+15=0

=> (x^2+8x+7)(x^2+8x+15)+15=0

\(2xy-2x-2y=4\) 

=> \(xy-x-y=2\) 

=> \(x\left(y-1\right)-\left(y-1\right)=3\) 

=> \(\left(x-1\right)\left(y-1\right)=3\) 

Do x,y là số nguyên nên x-1 và y-1 là ước của 3. Ta có bảng sau

x-1-3-113
x-2024
y-1-1-331
y0-242

Vậy....

9 tháng 9 2017

\(2x^4-7x^3+9x^2-7x+2=0\)

\(\Leftrightarrow2x^4-x^3-6x^3+3x^2+6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x^4-x^3\right)-\left(6x^3-3x^2\right)+\left(6x^2-3x\right)-\left(4x-2\right)=0\)

\(\Leftrightarrow x^3\left(2x-1\right)-3x^2\left(2x-1\right)+3x\left(2x-1\right)-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)(1)

Ta dễ thấy \(x^3-3x^2+3x-2>0\forall x\) nên để PT (1) có nghiệm \(\Leftrightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy nghiệp phương trình trên là \(S=\left\{\frac{1}{2}\right\}\)

9 tháng 9 2017

Sủa chút : \(\left(2x-1\right)\left(x^3-3x^2+3x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(x^3-2x^2\right)+\left(-x^2+2x\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

6 tháng 4 2018

\(bpt\Leftrightarrow\left[\left(x+1\right)^2+3\right]\left(x-1\right)< 0\)

\(\left(x+1\right)^2+3>0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

4 tháng 4 2017

x=3;-0,5;-2

30 tháng 1 2019

\(x^4+3x^2+x^3+2x+2=0\)

\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)

Do 2 thừa số ở VT đều > 0

\(\Rightarrow\) PTVN

30 tháng 1 2019

\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

19 tháng 1 2020

bạn chơi roblox à

19 tháng 1 2020

\(x^4+x^2-y^2-y+20=0\)

<=> x2(x2+1)-y(y+1)=-20

\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-1\right)=0\)

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)