K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

b) (x+1)(x+7)(x+3)(x+5)+15=0

=> (x^2+7x+x+7)(x^2+5x+3x+15)+15=0

=> (x^2+8x+7)(x^2+8x+15)+15=0

19 tháng 2 2021

a)(3x-1)(4x-8)=0

⇔3x-1=0 hoặc 4x-8=0

1.3x-1=0⇔3x=1⇔x=1/3

2.4x-8=0⇔4x=8⇔x=2

phương trình có 2 nghiệm:x=1/3 và x=2

b)(x-2)(1-3x)=0

⇔x-2=0 hoặc 1-3x=0

1.x-2=0⇔x=2

2.1-3x=0⇔-3x=1⇔x=-1/3

phương trình có 2 nghiệm:x=2 và x=-1/3

c)(x-3)(x+4)-(x-3)(2x-1)=0

⇔(x+4)(2x-1)=0

⇔x+4=0 hoặc 2x-1=0

1.x+4=0⇔x=-4

2.2x-1=0⇔2x=1⇔x=1/2

phương trình có hai nghiệm:x=-4 và x=1/2

d)(x+1)(x+2)=2x(x+2)

⇔(x+1)(x+2)-2x(x+2)=0

⇔2x(x+1)=0

⇔2x=0 hoặc x+1=0

1.2x=0⇔x=0

2.x+1=0⇔x=-1

phương trình có 2 nghiệm:x=0 và x=-1

 

27 tháng 6 2019

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)\(Dat:x^2+8x+7=a\Rightarrow a\left(a+8\right)+15=0\Leftrightarrow a^2+8a+15=0\Leftrightarrow\left(a+3\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=-3\\a=-5\end{matrix}\right.\)\(+,a=-5\Rightarrow x^2+8x+7=-5\Leftrightarrow x^2+8x+16=4\Leftrightarrow\left(x+4\right)^2=4\Rightarrow\left[{}\begin{matrix}x+4=-2\\x+4=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\left(thoaman\right)\\x=2\left(loai\right)\end{matrix}\right.\)\(+,a=-3\Rightarrow x^2+8x+7=-3\Leftrightarrow x^2+8x+16=6\Leftrightarrow\left(x+4\right)^2=6\Leftrightarrow\left[{}\begin{matrix}x+4=-\sqrt{6}\\x+4=\sqrt{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\left(\sqrt{6}+4\right)\left(thoaman\right)\\x=\sqrt{6}-4\left(thoaman\right)\end{matrix}\right.\) \(\Rightarrow x\in\left\{\sqrt{6}-4;-\sqrt{6}-4;-6\right\}\)

28 tháng 6 2019

giỏi :) pt bậc 4 loại đặc biệt đấy :) nhóm và đặt ẩn phụ là thành bậc 2 :D

16 tháng 7 2019

\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=0\)

\(\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)

Đặt \(x^2+8x+11=y\Rightarrow x^2+8x+7=y-4;x^2+8x+15=y+4\)

Khi đó:

\(pt\Leftrightarrow\left(y-4\right)\left(y+4\right)+15=0\)

\(\Leftrightarrow y^2-1=0\)

\(\Leftrightarrow y=1;y=-1\)

Nếu \(y=1\Rightarrow x^2+8x+11=1\)

\(\Rightarrow x^2+8x+10=0\)

\(\Rightarrow-\left(6-x^2-8x-16\right)=0\)

\(\Rightarrow-\left[6-\left(x+4\right)^2\right]=0\)

\(\Rightarrow-\left(\sqrt{6}-x-4\right)\left(\sqrt{6}+x+4\right)=0\)

\(\Rightarrow x=-4-\sqrt{6};x=\sqrt{6}-4\)

Nếu \(y=-1\),ta có:

\(x^2+8x+11=-1\)

\(\Rightarrow x^2+8x+12=0\)

\(\Rightarrow x^2+2x+6x+12=0\)

\(\Rightarrow x\left(x+2\right)+6\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+6\right)=0\)

\(\Rightarrow x=-2;x=-6\)

Vậy \(x=-2;x=-6;x=-4-\sqrt{6};x=\sqrt{6}-4\)

22 tháng 12 2023

a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)

\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)

b) \(\left(x+3\right)^2-5x-15=0\)

\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

c) \(2x^5-4x^3+2x=0\)

\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)

\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)

\(\Rightarrow2x\left(x^2-1\right)^2=0\)

\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(\text{#}Toru\)

16 tháng 4 2020

a, 2x(x + 5) - (x - 3)2 = x2 + 6

<=> 2x2 + 10x - (x2 - 6x + 9) = x2 + 6 

<=> 2x2 + 10x - x2 + 6x - 9 - x2 = 6

<=> 16x = 6 + 9

<=> 16x = 15

<=> x = 15/16

Vậy...

b, (4x + 7)(x - 5) - 3x2 = x(x - 1)

<=> 4x2 - 20x + 7x - 35 - 3x2 = x2 - x

<=> 4x2 - 20x + 7x - 3x2 - x2 + x = 35

<=> -12x = 35

<=> x = -35/12

Vậy...

Bài 2: 

a: =>4x(x+5)=0

=>x=0 hoặc x=-5

b: =>(x+3)(x-3)=0

=>x=-3 hoặc x=3

19 tháng 2 2019

1) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)

2) \(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)

3) \(\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)

7 tháng 11 2021

\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

7 tháng 11 2021

a) 9x2-49=0

(3x)2-72=0

<=> (3x-7)(3x+7)=0

th1: 3x-7=0

<=>3x=7

<=>x=\(\dfrac{7}{3}\)

th2: 3x+7=0

<=>3x=-7

<=>x=\(-\dfrac{7}{3}\)