K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

\(10x^2+11x+3\ge0\)

\(\Leftrightarrow10x^2+5x+6x+3\ge0\)

\(\Leftrightarrow5x\left(2x+1\right)+3\left(2x+1\right)\ge0\)

\(\Leftrightarrow\left(5x+3\right)\left(2x+1\right)\ge0\)

\(\Rightarrow x\le-\frac{3}{5};-\frac{1}{2}\le x\)

26 tháng 10 2015

bạn phải phân tích đa thức thành nhân tử để hạ bậc. Một mẹo mình mách bạn thế này . bạn tìm một giá trị của x thỏa mãn thì dựa vào đó đó phân tich. Thông thường giá trị đó là ước của hằng số trong vế trái ví dụ câu a bạn thay ước của 12. mình thấy -1 thỏa mãn vậy khi phân tích đa thức thành nhân tử chắc chắn sẽ xuất hiện nhân tử là x+1 và dựa vào đó mình phân tích như sau:

x3-6x2+5x+12=0

<=> x3+x2-7x2-7x+12x+12=0

<=> (x3+x2)-(7x2+7x)+(12x+12)=0

<=> x2(x+1​)-7x(x+1​)+12(x+1​)=0

<=> (x+1)(x2-7x+12)=0

Phân tích tiếp nhóm x2-7x+12 = x2-3x-4x+12 = x(x-3)-4(x-3) = (x-3)(x-4)

vậy phương trình tương đương

<=> (x+1)(x-3)(x-4) = 0

đến đây dễ dàng suy ra x = -1; 3; 4

Các câu còn lại tương tự bạn tự làm vì quá nhiều mình không gõ được

NV
13 tháng 2 2020

\(2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow2x^3-32x+3x^2-48=0\)

\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=-\frac{3}{2}\end{matrix}\right.\)

b/ \(\Leftrightarrow10x^2-15x+4x-6=0\)

\(\Leftrightarrow5x\left(2x^2-3\right)+2\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

a)

$10x^2-11x-6=0$

$\Leftrightarrow 10x^2-15x+4x-6=0$

$\Leftrightarrow 5x(2x-3)+2(2x-3)=0$

$\Leftrightarrow (2x-3)(5x+2)=0$

$\Rightarrow 2x-3=0$ hoặc $5x+2=0$

$\Rightarrow x=\frac{3}{2}$ hoặc $x=-\frac{2}{5}$

b)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^3-8x^2+11x-44x+12x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=\pm 4$ hoặc $x=\frac{-3}{2}$

4 tháng 4 2020

a) x^4 - 5x^2 + 4 = 0

<=> (x^2 - 1)(x^2 - 4) = 0

<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0

<=> x = +-1 hoặc x = +-2

b) x^4 - 10x^2 + 9 = 0

<=> (x^2 - 1)(x^2 - 9) = 0

<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0

<=> x = +-1 hoặc x = +-3

c) x^3 + 6x^2 + 11x + 6 = 0

<=> (x^2 + 5x + 6)(x + 1) = 0

<=> (x + 2)(x + 3)(x + 1) = 0

<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0

<=> x = -2 hoặc x = -3 hoặc x = -1

d) x^3 + 9x^2 + 26x + 24 = 0

<=> (x^2 + 7x + 12)(x + 2) = 0

<=> (x + 3)(x + 4)(x + 2) = 0

<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0

<=> x = -3 hoặc x = -4 hoặc x = -2

16 tháng 3 2017

x~-0.017

16 tháng 3 2017

x~-0.017

8 tháng 1 2017

ta có x3-6x2+11x-6=0

hay x3-x2-5x2-+5x+6x-6=0

=>x(x-1) - 5x(x-1)+6(x-1)=0

(x-1).(x-5x+6)=0 <=> (x-1)(x2-2x-3x+6)=0

(x-1)(x(x-2)-3(x-2)=0

(x-1)(x-2)(x-3)=0 <=> x-1=0 hoặc x-2=0 hoặc x-3=0

<=> x=1 hoặc x=2 hoặc x=3

vậy S ={1;2;3}

NV
18 tháng 4 2021

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)

\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;1\right)\)

19 tháng 8 2021

Vì sao 13/5 < 4 ạ?

3 tháng 4 2020

a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )  

<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0

<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0

<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0

<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)

Vậy x = { \(\frac{-1}{3};-5\)

b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0 

<=> ( x + 5 )2 -4.x . (x + 5 ) = 0

<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0

<=> ( x + 5 ) . ( 5 - 3.x )  = 0

<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{3};-5\right\}\)

c) (4.x - 5 )- 2. ( 16.x2 -25 ) = 0 

<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0

<=> (  4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0

<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0

<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0

<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)

Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)

d) ( 4.x + 3 )2 = 4. ( x- 2.x + 1 ) 

<=> 16.x+ 24.x + 9 - 4.x + 8.x - 4 = 0

<=> 12.x2 + 32.x + 5 =0 

<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0 

<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)

Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)

e) x2 -11.x + 28 = 0

<=> x2 -4.x  - 7.x + 28 = 0

<=> ( x - 7 ) . ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)

Vậy x = { 4 ; 7 } 

f ) 3.x.3 - 3.x2 - 6.x = 0

<=> 3.x. ( x2 -x - 2 ) = 0 

<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

        \([x=0\)                \([x=0\)

( Lưu ý :Lưu ý này không cần ghi vào vở :  Chị nối 2 ý đó làm 1 nha cj ! ) 

Vậy x = { 2 ; -1 ; 0 }