Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét phương trình 2 có
(1-x2 )/(1+xy)2 - (x+y)2 - y2 =1
=>(1-x2)/1+2xy+x2y2-x2-2xy-y2 -y2=1
=>(1-x2) /(1-x2 )-y2(1-x2) -y2 =1
=>(1-x2)/(1-x2)(1-y2) -y2=1
=>1/(1-y2) -y2=1
=>1=(1-y2)2
=>1=1-2y2+y4
=>y4-2y2=0
=>y2(y2-2)=0
=>y=0
y2-2=0
=> y=+√2
=> y=-√2
Thay y vào phương trình 1 là ra x
à nhầm ... sửa lại dòng 6
=> 1/(1-y2) - y2=1
=> 1/(1-y2)=1+y2
=> 1=1-y4
=> y=0
=>x=3
=> x=-3
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y+1\right)=xy-1\\\left(x-2\right)\left(y-2\right)=xy-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}xy+x-y-1=xy-1\\xy-2x-2y+4=xy-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-y=0\\-2x-2y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2y=0\\2x+2y=12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x=12\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=x=3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y+1\right)=xy-1\\\left(x-2\right)\left(y-2\right)=xy-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x-y-1=xy-1\\xy-2x-2y+4=xy-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)
1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)
\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)
+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)
+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:
\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)
Vậy hệ có nghiệm (1;1),(-1;-1).
2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)
\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)
Vậy hệ có nghiệm (1;1).
\(hpt\Leftrightarrow\hept{\begin{cases}x^2y^2+x^2+y^2+1=10\\\left(x+y\right)\left(xy-1\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+\left(xy-1\right)^2=10\\\left(x+y\right)\left(xy-1\right)=3\end{cases}}\)
Đặt \(u=x+y;v=xy-1\).Hệ trở thành \(\hept{\begin{cases}u^2+v^2=10\\uv=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(u+v\right)^2=16\\uv=3\end{cases}}\Leftrightarrow\hept{\begin{cases}u+v=\pm4\\uv=3\end{cases}}\)
*) Nếu \(\hept{\begin{cases}u+v=4\\uv=3\end{cases}}\)thì ta có \(\hept{\begin{cases}u=3\\v=1\end{cases}}\)hoặc \(\hept{\begin{cases}u=1\\v=3\end{cases}}\)
*Với\(\hept{\begin{cases}u=3\\v=1\end{cases}}\)thì \(\hept{\begin{cases}x+y=3\\xy-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)
\(\Leftrightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(1;2\right)\right\}\)
Với \(\hept{\begin{cases}u=1\\v=3\end{cases}}\)thì \(\hept{\begin{cases}x+y=1\\xy-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=3\\xy=4\end{cases}}\)
nên x,y là 2 nghiệm của pt \(t^2-t+4=0\)có \(\Delta=1^2-4.4=-15< 0\)(loại th này)
*) Nếu \(\hept{\begin{cases}u+v=-4\\uv=3\end{cases}}\)
Giải tương tự như trên ta được hệ có 6 nghiệm
\(\left(2;1\right);\left(1;2\right);\left(-3;0\right);\left(0;-3\right);\left(-2;1\right);\left(1;-2\right)\)
\(\left\{{}\begin{matrix}1=x^2+\left(y+1\right)^2-x\left(y+1\right)\\2x^3=x+y+1\end{matrix}\right.\)
Nhân vế:
\(\Rightarrow2x^3=\left(x+y+1\right)\left[x^2+\left(y+1\right)^2-x\left(y+1\right)\right]\)
\(\Rightarrow2x^3=x^3+\left(y+1\right)^3\)
\(\Rightarrow x^3=\left(y+1\right)^3\)
\(\Rightarrow x=y+1\)
Thế vào pt đầu sẽ được 1 pt bậc 2 một ẩn
\(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y-3\right)=xy-3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy-3x-3y+9=xy-3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-x+y=0\\-3x-3y=-12\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-x+y=0\\x+y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2y=4\\x+y=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=2\\x+2=4\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\)
Vậy (2;2) là nghiệm
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)