K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2018

\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\left(1\right)\\x^2-3y^2+2xy-x+5y=0\left(2\right)\end{matrix}\right.\)

Phương trình (2) <=> \(x^2+x\cdot\left(2y-1\right)-3y-3y^2+5y-2=0\)

Coi phương trình là phương trình bậc 2 ẩn x

Ta có : \(\Delta=\left(2y-1\right)^2-4\left(-3y^2+5y-2\right)=\left(4y-3\right)^2\ge0\)

=> Phương trình có 2 nghiệm :

\(\left[{}\begin{matrix}x=-3y+2\\x=y-1\end{matrix}\right.\)

+) x = -3y + 2

Thay vào (1) ta được :

\(\left(2-3y\right)^2+y^2+2-3y+y=8\)

\(5y^2-7y-1=0\)

\(\Delta=69>0\)

=> Phương trình 2 nghiệm

\(\left[{}\begin{matrix}y=\dfrac{7+\sqrt{69}}{10}\\y=\dfrac{7-\sqrt{69}}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1+3\sqrt{69}}{10}\\x=\dfrac{3\sqrt{69}-1}{10}\end{matrix}\right.\)

+) x = y - 1

Thay vào (1) , ta được :

\(\left(y-1\right)^2+y^2+y-1+y=8\)

\(2y^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy ....

NV
18 tháng 9 2020

a.

\(x^2-3y^2+2xy-x+5y-2=0\)

\(\Leftrightarrow\left(x^2+3xy-2x\right)+\left(-3y^2-xy+2y\right)+x+3y-2=0\)

\(\Leftrightarrow x\left(x+3y-2\right)-y\left(x+3y-2\right)+x+3y-2=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y-1\\x=2-3y\end{matrix}\right.\)

Thay lên pt đầu: \(\left[{}\begin{matrix}\left(y-1\right)^2+y^2+y-1+y=8\\\left(2-3y\right)^2+y^2+2-3y+y=8\end{matrix}\right.\)

Bạn tự giải nốt

b.

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=9-2xy\\4x+6y=20-2xy\end{matrix}\right.\)

\(\Rightarrow x+y=11\Rightarrow y=11-x\)

Thay vào pt đầu:

\(3x+5\left(11-x\right)=9-2x\left(11-x\right)\)

Bạn tự giải nốt

7 tháng 11 2021

\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)

19 tháng 5 2023

`{(x+3y=x(5y-1)),(1/x-3/y=-2):}`         `ĐK: x; y ne 0`

`<=>{(x+3y=5xy-x),(-3x+y=-2xy):}`

`<=>{(5xy-2x=3y),(-3x+y=-2xy):}`

`<=>{(x(5y-2)=3y),(-3x+y=-2xy):}`

`<=>{(x=[3y]/[5y-2]),(-3x+y=-2xy):}`    `ĐK: y ne 2/5` (TH `y=2/5` ko t/m)

`<=>{(x=[3y]/[5y-2]),(-3[3y]/[5y-2]+y=-2[3y]/[5y-2]y):}`

`<=>{(x=[3y]/[5y-2]),(-9y+5y^2-2y=-6y^2):}`

`<=>{(x=[3y]/[5y-2]),(11y^2-11y=0):}`

`<=>{(x=[3y]/[5y-2]),([(y=0(ko t//m)),(y=1(t//m)):}):}`

`<=>{(x=[3. 1]/[5.1-2]=1),(y=1):}`  (t/m)

 

NV
28 tháng 1 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

NV
28 tháng 1 2021

b.

ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)

Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:

\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)

\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)

Thay xuống pt dưới:

\(6y+y=14\Rightarrow y=2\)

\(\Rightarrow x=4\)

24 tháng 11 2018

Pt đầu phân tích được đó: x2 + 2xy - 3y2 = (x2 + 2xy + y2) - 4y2 = (x + y)2 - (2y)2 = (x + 3y)(x - y) = 0

<=> x = y hoặc x = 3y

Thay vào pt dưới rồi xét TH thôi :)

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .