K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi x,y,z là số học sinh khối 6, 7, 8

(x,y,z>0, đvị là học sinh)

Đã biết khối học sinh lớp 8 ít hơn số hs khối 6 là 120 hs

x-z=120

x, y, z tỉ lệ với 8, 7, 5

x/8=y/7=z/5

Áp dụng tính chất dãy tỉ số bằng nhau có:

x/8=y/7=z/5= x-z/8-5=120/3=40

=> x/8= 40       => x=40.8=320        => số hs khối 6 là 320 hs

y/7= 40                 y=40.7= 280            số hs khối 7 là 280 hs

z/5= 40                 z=40.5=200              số hs khối 8 là 200 hs

\(\frac{3}{5}.\left(\frac{5}{3}-\frac{2}{7}\right)-\left(\frac{7}{3}-\frac{3}{7}\right).\frac{3}{5}\)

\(=\frac{3}{5}.\text{[}\left(\frac{5}{3}-\frac{2}{7}\right)-\left(\frac{7}{3}-\frac{3}{7}\right)\text{]}\)

\(=\frac{3}{5}.\text{[}\frac{5}{3}-\frac{2}{7}-\frac{7}{3}+\frac{3}{7}\text{]}\)

\(=\frac{3}{5}.\text{[}\left(\frac{5}{3}-\frac{7}{3}\right)-\left(\frac{2}{7}-\frac{3}{7}\right)\text{]}\)

\(=\frac{3}{5}.\text{[}\frac{-2}{3}-\frac{-1}{7}\text{]}\)

\(=\frac{3}{5}.\left(\frac{-2}{3}+\frac{1}{7}\right)\)

\(=\frac{3}{5}.\left(\frac{-14}{21}+\frac{3}{21}\right)\)

\(=\frac{3}{5}.\frac{-11}{21}\)

\(=\frac{3.\left(-11\right)}{5.21}\)

\(=\frac{-11}{5.7}=\frac{-11}{35}\)

Chúc bạn học tốt

2 tháng 2 2022

Em cập nhật lại đề nha em!

Bài 5: 

a: \(=4x^2y^3\)

b: \(=\dfrac{9}{2}x^2y\)

c: \(=xyz^2\left(\dfrac{3}{4}-\dfrac{1}{4}+\dfrac{1}{2}\right)=xyz^2\)

12 tháng 3 2022

Bài 4

Nhóm 1: \(\dfrac{5}{3}x^2y,2x^2y,x^2y,\dfrac{1}{2}x^2y,\dfrac{-1}{2}x^2y,\dfrac{-2}{5}x^2y,0x^2y,-4x^2y\)

Nhóm 2: \(\left(xy\right)^2,3x^2y^2\)

Bài 5

\(a,3x^2y^3+x^2y^3\)

\(=4x^2y^3\)

\(b,5x^2y-\dfrac{1}{2}x^2y\)

\(=\left(5-\dfrac{1}{2}\right)\left(x^2y\right)\)

\(=\dfrac{9}{2}x^2y\)

\(c,\dfrac{3}{4}xyz^2+\dfrac{1}{2}xyz^2-\dfrac{1}{4}xyz^2\)

\(=\left(\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{1}{4}\right)\left(xyz^2\right)\)

\(=\left(\dfrac{3}{4}+\dfrac{2}{4}-\dfrac{1}{4}\right)\left(xyz^2\right)\)

\(=xyz^2\)

Bài 6

\(a,\left(-2xy^3\right)\left(\dfrac{1}{3}xy\right)^2\)

\(=\left(-2.\dfrac{1}{9}\right)\left(x.x^2\right)\left(y^3y^2\right)\)

\(=\dfrac{-2}{9}x^3y^5\)

Bậc: 3 + 5 = 8

Hệ số: \(\dfrac{-2}{9}\)

\(b,18x^2y^2\left(\dfrac{-1}{6}x^3y\right)\)

\(=\left(-18.\dfrac{1}{6}a\right)\left(x^2x^2\right)\left(y^2y^3\right)\)

\(=-3ax^4y^5\)

Bậc: 4 + 5 = 9

Hệ số: \(-3a\)

\(=\dfrac{5}{21}+\dfrac{16}{21}-\left(\dfrac{19}{23}+\dfrac{4}{23}\right)+\dfrac{1}{2}=\dfrac{1}{2}\)

14 tháng 8 2021

Bài 1 : 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)

bài 2 : 

Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

Với k = 1 thì x = 2 ; y = 5

Với k = - 1 thì x = -2 ; y = -5

10 tháng 10 2021

\(\left(4x-1\right)^3=-\dfrac{1}{27}\)

\(\Rightarrow4x-1=-\dfrac{1}{3}\)

\(\Rightarrow4x=\dfrac{2}{3}\Rightarrow x=\dfrac{1}{6}\)

10 tháng 10 2021

\(\left(4x-1\right)^3=\left(-\dfrac{1}{27}\right)\Leftrightarrow4x-1=-\dfrac{1}{3}\Leftrightarrow4x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{6}\)

28 tháng 4 2022

1)
a. Xét tg ABC cân tại A có AC=AB; gACB = g ABC.
Xét tg ACN và tg ABM có:
CN=BM (gt)
AC=AB
gACB=gABC
=> tg ACN = tg ABM (cgc)
=> AN=AM (2 cạnh tg ứng)
H là trung điểm BC nên AH là đường trung tuyến của tg ABC 
Mak tg ABC cân => H cũng là đường cao của tg ABC => AH ⊥ BC
b. Vì H là trung đ của BC nên CH=HB=BC/2= 3cm
Áp dụng định lý Py ta go vào tg AHB có:
AB^2=AH^2+HB^2
AH^2= AB^2 - HB^2
AH^2= 5^2 - 3^2 = 16 cm
=> AH= 4 cm
c. Xét tg AMN và tg KMB có:
AM=KM (gt)
MN=BM (gt)
gHMA=gKMB (đối đỉnh)
=> tg AMN = tg KMB (cgc)
d. tg AMN = tg KMB => gMAN=gMKB
=> AN=KB=Am
Mà AB>AM (quan hệ giữ đường xiêng và hình chiếu) nên AB>BK
=> gBKA> gBAK
=> gMAN>gBAM

28 tháng 4 2022

Bổ sung câu 1b:
MN= BC/3=6/3=2 cm
MH= HN= MN/2= 1 cm
Áp dụng đl Py-ta-go vào tg AMH có
AM^2=AH^2+MH^2= 4^2+1^2= 17
=> AM= căn 17 cm

3 tháng 8 2023

Các số được điền vào các ô theo thứ tự từ trái sang phải là:

-1; - \(\dfrac{1}{3}\);  \(\dfrac{2}{3}\)\(\dfrac{4}{3}\)