Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9}{17}\times\dfrac{21}{13}+\dfrac{9}{17}\times\dfrac{5}{13}-\dfrac{9}{17}\times2\)
\(=\dfrac{9}{17}\times\left(\dfrac{21}{13}+\dfrac{5}{13}-2\right)\)
\(=\dfrac{9}{17}\times\left(\dfrac{26}{13}-2\right)=\dfrac{9}{17}\times\left(2-2\right)\)
\(=\dfrac{9}{17}\times0=0\)
a, \(\dfrac{x-1}{21}\) = \(\dfrac{3}{x+1}\)
( x-1)(x+1) = 21.3
x2 + x - x -1 = 63
x2 = 63 + 1
x2 = 64
x = + - 8
b, 2\(\dfrac{1}{2}\)x + x = 2\(\dfrac{1}{17}\)
x( \(\dfrac{5}{2}\) + 1) = \(\dfrac{35}{17}\)
x = \(\dfrac{35}{17}\) : ( \(\dfrac{5}{2}\)+1)
x = \(\dfrac{35}{17}\) x \(\dfrac{2}{7}\)
x = \(\dfrac{10}{17}\)
c, (x + \(\dfrac{1}{4}\) - \(\dfrac{2}{3}\) ) : ( 2 + \(\dfrac{1}{6}\) - \(\dfrac{1}{4}\)) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)): \(\dfrac{23}{12}\) = \(\dfrac{7}{46}\)
(x - \(\dfrac{5}{12}\)) = \(\dfrac{7}{46}\) x \(\dfrac{23}{12}\)
x - \(\dfrac{5}{12}\) = \(\dfrac{7}{12}\)
x = \(\dfrac{7}{12}\) + \(\dfrac{5}{12}\)
x = 1
d, 2\(\dfrac{1}{3}\)x - 1\(\dfrac{3}{4}\)x + \(2\dfrac{2}{3}\) = 3\(\dfrac{3}{5}\)
x( \(\dfrac{7}{3}\) - \(\dfrac{7}{4}\)) + \(\dfrac{8}{3}\) = \(\dfrac{18}{5}\)
x\(\dfrac{7}{12}\) = \(\dfrac{18}{5}\) - \(\dfrac{8}{3}\)
x\(\dfrac{7}{12}\) = \(\dfrac{14}{15}\)
x = \(\dfrac{14}{15}\) : \(\dfrac{7}{12}\)
x = \(\dfrac{8}{5}\)
a) Ta có: \(\dfrac{2}{3}x-1=\dfrac{3}{2}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{5}{2}\)
hay \(x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
b) Ta có: \(\left|5x-\dfrac{1}{2}\right|-\dfrac{2}{7}=25\%\)
\(\Leftrightarrow\left|5x-\dfrac{1}{2}\right|=\dfrac{1}{4}+\dfrac{2}{7}=\dfrac{15}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{2}=\dfrac{15}{28}\\5x-\dfrac{1}{2}=\dfrac{-15}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{29}{28}\\5x=\dfrac{-1}{28}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{140}\\x=\dfrac{-1}{140}\end{matrix}\right.\)
c) Ta có: \(\dfrac{x-3}{4}=\dfrac{16}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=64\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=8\\x-3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
d) Ta có: \(\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{31}\le x\le\dfrac{-9}{14}+4-\dfrac{5}{14}\)
\(\Leftrightarrow\dfrac{3246}{6851}\le x\le3\)
\(\Leftrightarrow x\in\left\{1;2;3\right\}\)
`a, 3-(x+5/7 )=9/21`
`=>x+5/7= 3-9/21`
`=>x+5/7= 63/21-9/21`
`=>x+5/7= 54/21`
`=>x= 54/21-5/7`
`=>x= 54/21 - 15/21`
`=>x= 39/21`
`=>x= 13/7`
`b, x/2+ x/5 = 17/10`
`=> (5x)/10 + (2x)/10=17/10`
`=> 7x/10=17/10`
`=> 7x.10=10.17`
`=>7x.10=170`
`=>7x=170:10`
`=>7x=17`
`=>x=17/7`
`c, 1/2x + 1/3 -1= 3 1/3`
`=> 1/2x + 1/3 -1= 10/3`
`=> 1/2x + 1/3=10/3+1`
`=> 1/2x + 1/3=10/3 + 3/3`
`=> 1/2x + 1/3=13/3`
`=>1/2 x= 13/3 -1/3`
`=> 1/2x= 12/3`
`=> 1/2x= 4`
`=>x= 4 :1/2`
`=>x= 4 xx 2`
`=>x=8`
\(a,3-\left(x+\dfrac{5}{7}\right)=\dfrac{9}{21}\\ x+\dfrac{5}{7}=3-\dfrac{9}{21}\\ x+\dfrac{5}{7}=\dfrac{18}{7}\\ x=\dfrac{18}{7}-\dfrac{5}{7}\\ x=\dfrac{13}{7}\\ b,\dfrac{x}{2}+\dfrac{x}{5}=\dfrac{17}{10}\\ \dfrac{5x}{10}+\dfrac{2x}{10}=\dfrac{17}{10}\\ \dfrac{7x}{10}=\dfrac{17}{10}\\ 7x=17\\ x=\dfrac{17}{7}\\ c,\dfrac{1}{2}x+\dfrac{1}{3}-1=3\dfrac{1}{3}\\ \dfrac{1}{2}x+\dfrac{1}{3}-1=\dfrac{10}{3}\\ \dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{10}{3}+1\\ \dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{13}{3}\\ \dfrac{1}{2}x=\dfrac{13}{3}-\dfrac{1}{3}\\ \dfrac{1}{2}x=4\\ x=4:\dfrac{1}{2}\\ x=10\)
a) 7.28=x.x
=> 196=x2
=> \(\left(\pm14\right)^2=x^2\)
=> x=\(\pm14\)
b) DK: x≠-17
pt<=> 4.(10+2)=6.(17+x)
=> 4.12=17.6+6x
=> 48-102=6x
=>-66=6x
=>x=-11
c) 7.(x+40)=6.(17+x)
=> 7x+280=102+6x
=> 7x-6x=102-280
=> x=-178
Giải:
a) \(\dfrac{7}{x}=\dfrac{x}{28}\)
\(\Leftrightarrow x^2=196\)
\(\Leftrightarrow x=\pm\sqrt{196}=\pm14\)
Vậy ...
b) \(\dfrac{10+2}{17+x}=\dfrac{3}{4}\)
\(\Leftrightarrow40+8=51+3x\)
\(\Leftrightarrow3x=40+8-51=-3\)
\(\Leftrightarrow x=-\dfrac{3}{3}=-1\)
Vậy ...
c) \(\dfrac{40+x}{17+x}=\dfrac{6}{7}\)
\(\Leftrightarrow280+7x=102+6x\)
\(\Leftrightarrow7x-6x=102-280\)
\(\Leftrightarrow x=-178\)
Vậy ...
1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)
\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)
\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)
Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)
\(\dfrac{x-17}{1990}+\dfrac{x-21}{1986}+\dfrac{x+1}{1004}=4\)
\(\Rightarrow\left(\dfrac{x-17}{1990}-1\right)+\left(\dfrac{x-21}{1986}-1\right)+\left(\dfrac{x+1}{1004}-2\right)=0\)
\(\Rightarrow\dfrac{x-2007}{1990}+\dfrac{x-2007}{1986}+\dfrac{x-2007}{1004}=0\)
\(\Rightarrow\left(x-2007\right)\left(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\right)=0\)
\(\Rightarrow x-2007=0\Rightarrow x=2007\)
Vậy x = 2007
tks nhìu nhan