K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

\(\frac{2x.56}{2,24}=\frac{2\left(56x+16y\right)}{3,2}\)

\(\Leftrightarrow\frac{112x}{2,24}=\frac{56x+16y}{1,6}\)

\(\Leftrightarrow50x=\frac{56x+16y}{1,6}\)

\(\Leftrightarrow80x=56x+16y\)

\(\Leftrightarrow24x=16y\)

\(\Leftrightarrow\frac{x}{y}=\frac{16}{24}=\frac{2}{3}\)

\(\Leftrightarrow x=2;y=3\)

Vậy .....................

12 tháng 11 2016

Dùng hằng đẳng thức đáng nhớ thôi b

Ta có y2 - x2 = (y - x)(y + x)

Mà theo đêc bài thì mẫu có (y + x) rồi nên chỉ cần nhân cho (y - x) nữa là được

12 tháng 11 2016

Mình ko hiểu bạn muốn hỏi gì? Câu hỏi mập mờ quá!

15 tháng 3 2016

(x+2/2014)+1 + (x+1/2015)+1 = (x+2016)+1 + (x-1/2017)+1

(x+2016/2014) + (x+2016/2015) - (x+2016/2016) - (x-2016/2017)=0

=>(x+2016)(1/2014+1/2015-1/2016-1/2017)

vì 1/2014+1/2015-1/2016-1/2017 luôn khác 0 => x+2016=0

=> x=-2016

23 tháng 12 2015

\(A=\frac{\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]}{\left(xy\right)^3}=\frac{4.\left(16-6\right)}{8}=5\)

7 tháng 3 2019

\(\Leftrightarrow\dfrac{x}{27}-1+\dfrac{x}{24}-\dfrac{3}{2}+\dfrac{x}{30}=4\)

\(\Leftrightarrow x\left(\dfrac{1}{27}+\dfrac{1}{24}+\dfrac{1}{30}\right)=\dfrac{13}{2}\)

\(\Leftrightarrow x=\dfrac{\dfrac{13}{2}}{\dfrac{1}{27}+\dfrac{1}{24}+\dfrac{1}{30}}\)\(=\dfrac{7020}{121}\)

Vậy pt có tập nghiệm là S=\(\left\{\dfrac{7020}{121}\right\}\).

7 tháng 3 2019

em cảm ơn nhiều

26 tháng 2 2019

a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)

\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)

\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)

\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)

b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)

c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)

\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)