Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phương trình mx+2=0 là phương trình bậc nhất một ẩn thì \(m\ne0\)
b) Để phương trình \(\left(2-m\right)+2m=0\) là phương trình bậc nhất một ẩn thì \(2-m\ne0\)
hay \(m\ne2\)
c) Để phương trình \(mx^2-x+5=0\) là phương trình bậc nhất một ẩn thì m=0
d) Để phương trình \(\left(m-1\right)x^2+mx-8=0\) là phương trình bậc nhất một ẩn thì m-1=0
hay m=1
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\frac{m^2.\left(x+2-x+2\right)\left(x+2+x-2\right)}{8}-4x=m^2-2m+1+6m+3\)
\(\frac{8m^2x}{8}-4x=m^2+4m+4\)
\(x.\left(m-2\right)\left(m+2\right)=\left(m+2\right)^2\)
+) với m = 2 thì 0x = 4 ( vô nghiệm )
+) với m = -2 thì 0x = 0 ( vô số nghiệm )
+) với m \(\ne\)2 và -2 thì x có 1 nghiệm \(\frac{m+2}{m-2}\)
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow\frac{m^2\left(x^2+4x+4-x^2+4x-4\right)}{8}-4x=\)\(m^2-2m+1+6m+3\)
\(\Leftrightarrow\frac{m^2.8x}{8}-4x=m^2+4m+4\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow x\left(m^2-4\right)=\left(m+2\right)^2\) \(\left(1\right)\)
+) Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Phương trình có nghiệm duy nhất \(x=\frac{\left(m+2\right)^2}{m^2-4}=\frac{\left(m+2\right)^2}{\left(m+2\right)\left(m-2\right)}=\frac{m+2}{m-2}\)
+) Nếu \(m=2\)
\(\left(1\right)\Leftrightarrow x\left(2^2-4\right)=\left(2+2\right)^2\)
\(\Leftrightarrow0=16\) ( vô lí )
\(\Rightarrow\)Phương trình trên vô nghiệm
+) Nếu \(m=-2\)
\(\left(1\right)\Leftrightarrow x\left[\left(-2\right)^2-4\right]=\left(-2+2\right)^2\)
\(\Leftrightarrow0=0\)( đúng )
\(\Rightarrow\)Phương trình có nghiệm đúng với mọi x
Vậy : - Nếu \(m\ne\pm2\)phương trình có nghiệm duy nhất \(x=\frac{m+2}{m-2}\)
- Nếu m = 2 thì phương trình vô nghiệm
- Nếu m = -2 thì phương trình có nghiệm đúng với mọi x
a)Thay m=-2 vào biểu thức ta có:
\(\left(2.-2\right)\left(x+3\right)=-\left(-2\right)x+5\)
\(\Leftrightarrow-4\left(x+3\right)=4x+5\)
\(\Leftrightarrow-4x-12=4x+5\)
\(\Leftrightarrow-4x-4x=12+5\)
\(\Leftrightarrow-8x=17\)
\(\Leftrightarrow x=\dfrac{-17}{8}\)
Nếu m=-2 thì \(x=\dfrac{-17}{8}\)
còn m=\(\dfrac{1}{2}\) thì bạn làm tương tự
mấy câu kia lát mình làm sau giờ mình bận rồi
a/ +) Với m = -2 ta có:
\(\left(2\cdot\left(-2\right)-1\right)\left(x+3\right)=-\left(-2x\right)+5\)
\(\Leftrightarrow-5\left(x+3\right)=2x+5\Leftrightarrow-5x-2x=5+15\)
\(\Leftrightarrow-7x=20\Leftrightarrow x=-\dfrac{20}{7}\)
Vậy khi m = -2 thì x = -20/7
+) Với m = 1/2 ta có:
\(\left(2\cdot\dfrac{1}{2}-1\right)\left(x+3\right)=-\dfrac{1}{2}x+5\)
\(\Leftrightarrow\dfrac{1}{2}x=5\Leftrightarrow x=10\)
Vậy khi m = 1/2 thì x = 10
b/ pt có nghiệm = -2
=> \(2m-1=2m+5\Leftrightarrow0\cdot m=6\left(voli\right)\)
Vậy không có gt của m nào t/m để pt có nghiệm x = -2
c/ (2m-1)(x+3) = -mx + 5
\(\Leftrightarrow2mx+6m-x+mx-3=5\)
\(\Leftrightarrow3mx-x=5-6m+3\)
\(\Leftrightarrow x\left(3m-1\right)=-6m+8\Leftrightarrow x=\dfrac{-6m+8}{3m-1}\)