K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

a)  4x + 20 = 0

⇔ 4x = -20

⇔ x = -5

Vậy phương trình có tập nghiệm S ={-5}

b) 2x – 3 = 3(x – 1) + x + 2

⇔ 2x – 3 = 3x – 3 + x + 2

⇔ 2x – 3x – x = -3 + 2 + 3

⇔ -2x = 2

⇔ X = -1

Vậy phương trình có tập nghiệm S ={-1}

c) (3x – 2)(4x + 5) = 0

3x – 2 = 0 hoặc 4x + 5 = 0 ·       

3x – 2 = 0 => x = 3/2 ·       

4x + 5 = 0 => x = – 5/4

Vậy phương trình có tập nghiệm S ={3/2; -5/4}

25 tháng 3 2017

a) 4x+20=0

   4x      =0-20

  4x       =-20

    x       =-20:4

   x        =-5

a: =>(x-2)(2x+5)=0

=>x-2=0 hoặc 2x+5=0

=>x=2 hoặc x=-5/2

c: \(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)

=>\(\dfrac{2x^2+2x-x^2+x}{x^2-1}=1\)

=>x^2+3x=x^2-1

=>3x=-1

=>x=-1/3

22 tháng 3 2022

\(a,\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{2;\dfrac{5}{2}\right\}\)

\(c,\Leftrightarrow2x.\left(x+1\right)-x.\left(x-1\right)=\left(x-1\right)\left(x+1\right)\)              ( ĐKXĐ: \(x\ne-1;x\ne1\) )

\(\Leftrightarrow2x^2+2x-x^2+x=x^2-1\\ \Leftrightarrow x^2-x^2+3x=-1\\ \Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\)  ( nhận )

Vậy phương trình có tập nghiệm S = \(\left\{-\dfrac{1}{3}\right\}\)

12 tháng 1 2023

\(a,\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(c,\left(x+3\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(d,\left(x+\dfrac{1}{2}\right)\left(4x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4\left(x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

\(e,\left(x-4\right)\left(5x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

\(f,\left(2x-1\right)\left(3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

12 tháng 1 2023

`a,(x-1)(x+2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

`b,(x -2)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

`c,(x +3)(x -5)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

`d,(x + 1/2)(4x + 4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\4x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\4x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

`e,(x -4)(5x -10)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

`f,(2x -1)(3x +6)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

`g,(2,3x -6,9)(0,1x -2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x=6,9\\0,1x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=20\end{matrix}\right.\)

a: =>(x-2)(2x+5)=0

=>x=2 hoặc x=-5/2

c: \(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)

=>\(\dfrac{2x^2+2x-x^2+x}{x^2-1}=1\)

=>x^2+3x=x^2-1

=>3x=-1

=>x=-1/3

3 tháng 2 2022

a) \(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)

b) \(\left(2,3x-6,9\right)\left(0,1x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2,3x-6,9=0\\0,1x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-20\end{matrix}\right.\)

c) \(\left(4x+2\right)\left(x^2+1\right)=0\)

Vì \(x^2+1\ge1>0\forall x\)

\(\Rightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)

d) \(\left(2x+7\right)\left(x-5\right)\left(5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{7}{2};5;-\dfrac{1}{5}\right\}\)

e) \(\left(x-1\right)\left(2x+7\right)\left(x^2+2\right)=0\)

Vì \(x^2+2\ge2>0\forall x\)

\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)

f) \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[\left(3x+2\right)\left(x+1\right)\right].\left(x-1-3x+2\right)=0\)

\(\Leftrightarrow\left(3x^2+5x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(3x^2+3x+2x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[3x\left(x+1\right)+2\left(x+1\right)\right]\left(-2x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+2\right)\left(-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+2=0\\-2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{-1;-\dfrac{2}{3};\dfrac{1}{2}\right\}\)

a: 3x-15=0

nên 3x=15

hay x=5

b: 4x+20=0

nên 4x=-20

hay x=-5

c: -5x-20=0

nên -5x=20

hay x=-4

a: =>4x-2x-2-3x-2=0

=>-x-4=0

=>x=-4

b: =>x+2-2x-2+x=0

=>0x=0(luôn đúng)

d: =>3x=3

hay x=1

e: =>2x=1

hay x=1/2

f: =>4x=-4

hay x=-1

g: =>3x=-3

hay x=-1

c: =>2x+3-5-4+x=0

=>3x-6=0

=>x=2

d: =>3x=3

hay x=1

e: =>2x=1

hay x=1/2

f: =>4x=-4

hay x=-1

g: =>3x=-3

hay x=-1

14 tháng 1 2022

\(a,4x-2\left(x+1\right)=3x+2\\ \Leftrightarrow4x-2x-2-3x-2=0\\ \Leftrightarrow-x-4=0\\ \Leftrightarrow x+4=0\\ \Leftrightarrow x=-4\)

Vậy pt có tập nghiệm \(S=\left\{-4\right\}\)

\(b,x+2-2\left(x+1\right)=-x\\ \Leftrightarrow x+2-2x-2+x=0\\ \Leftrightarrow0=0\)

Vậy pt có tập nghiệm \(S=R\)

\(c,2\left(x+3\right)-5=4-x\\ \Leftrightarrow2x+6-5-4+x=0\\ \Leftrightarrow3x-3=0\\ \Leftrightarrow3x=3\\ \Leftrightarrow x=1\)

Vậy pt có tập nghiệm \(S=\left\{1\right\}\)

\(d,3x-2=1\\ \Leftrightarrow3x=3\\ \Leftrightarrow x=1\)

Vậy pt có tập nghiệm \(S=\left\{1\right\}\)

\(e,2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{2}\right\}\)

\(f,4x+3=-1\\ \Leftrightarrow4x=-4\\ \Leftrightarrow x=-1\)

Vậy pt có tập nghiệm \(S=\left\{-1\right\}\)

\(g,3x+2=-1\\ \Leftrightarrow3x=-3\\ \Leftrightarrow x=-1\)

Vậy pt có tập nghiệm \(S=\left\{-1\right\}\)

3 tháng 2 2021

Bài 1: Giải các phương trình sau:

a) 3(2,2-0,3x)=2,6 + (0,1x-4)

<=> 6.6 - 0.9x = 2,6 + 0,1x - 4

<=> - 0.9x - 0,1x = -6.6 -1,4

<=> -x = -8

<=> x = 8

Vậy x = 8

b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)

<=> 3,6 - x - 0,5 = x - 5,5 + x

<=> - x - 3,1 = -5,5

<=> - x = -2.4

<=> x = 2.4

Vậy  x = 2.4