Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,x^2+3x-2=0\\ \Delta=3^2-4.1.\left(-2\right)=17\\ =>\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
Mấy câu còn lại mình giải rồi
a) 2x2 – 7x + 3 = 0 có a = 2, b = -7, c = 3
∆ = (-7)2 – 4 . 2 . 3 = 49 – 24 = 25, \(\sqrt{\text{∆}}\) = 5
x1 = \(\dfrac{-\left(-7\right)-5}{2.2}\) = \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\), x2 =\(\dfrac{-\left(-7\right)+5}{2.2}=\dfrac{12}{4}=3\)
b) 6x2 + x + 5 = 0 có a = 6, b = 1, c = 5
∆ = 12 - 4 . 6 . 5 = -119: Phương trình vô nghiệm
c) 6x2 + x – 5 = 0 có a = 6, b = 5, c = -5
∆ = 12 - 4 . 6 . (-5) = 121, \(\sqrt{\text{∆}}\) = 11
x1 = \(\dfrac{-5-1}{2.3}\) = -1; x2 = \(\dfrac{-1+11}{2.6}\) =
d) 3x2 + 5x + 2 = 0 có a = 3, b = 5, c = 2
∆ = 52 – 4 . 3 . 2 = 25 - 24 = 1, \(\sqrt{\text{∆}}\) = 1
X1 = \(\dfrac{-5-1}{2.3}\) = -1, x2 = \(\dfrac{-5+1}{2.3}\) = \(\dfrac{-2}{3}\)
e) y2 – 8y + 16 = 0 có a = 1, b = -8, c = 16
∆ = (-8)2 – 4 . 1. 16 = 0
y1 = y2 = \(-\dfrac{-8}{2.1}\) = 4
f) 16z2 + 24z + 9 = 0 có a = 16, b = 24, c = 9
∆ = 242 – 4 . 16 . 9 = 0
z1 = z2 = \(\dfrac{-24}{2.16}\) = \(\dfrac{3}{4}\)
Mấy bài này đều là toán lớp 8 mà. Mình mới lớp 8 mà cũng làm được nữa là bạn lớp 9 mà không làm được afk?
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
a: Ta có: \(x^2+3x+4=0\)
\(\text{Δ}=3^2-4\cdot1\cdot4=9-16=-7< 0\)
Do đó: Phương trình vô nghiệm
a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)
tks ạ