K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

a) làm gọn hệ số dần: 2x=y

<=>\(\left(2x+3\right)\left(4x^2+3\right)=\) \(\left(y+3\right)\left(y^2+3\right)=-19\)

\(y^3+3y^2+3y+9=-19\Leftrightarrow y^3+3y^2+3y+1=-27\)

\(\Leftrightarrow\left(y+1\right)^3=-3^3\Rightarrow y+1=-3\Rightarrow y=-4\Rightarrow x=-2\)

6 tháng 2 2019

29 tháng 1 2017

a) => 8x^3+12x^2+6x+28=0

=> 8x^3+16x^2-4x^2-8x+14x+28=0

=>8x^2(x+2)-4x(x+2)+14(x+2)=0

=>(x+2)(8x^2-4x+14)=0

=>x=-2 hoặc x=0.25

1 tháng 3 2017

Đại số lớp 8

14 tháng 8 2019

10 tháng 2 2018

a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27

⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27

⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29

⇔ -2x – 3x = 24 – 29

⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1

Tập nghiệm của phương trình : S = {1}

b) x2 – 4 – (x + 5)(2 – x) = 0

⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0

⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0

⇔ x = 2 hoặc x = -7/2

Tập nghiệm của phương trình: S = {2; -7/2 }

c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)

⇔ x ≠ 2 và x ≠ -2

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4

⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = {1/2}

d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)

⇔ x ≠ 1 và x ≠ -3

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0

⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)

Tập nghiệm của phương trình : S = ∅

15 tháng 5 2021

\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)

\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)

\(< =>2x^2-2x-24=2x^2+3x-2-27\)

\(< =>5x=-24+29=5\)

\(< =>x=\frac{5}{5}=1\)

5 tháng 2 2021

a) 2(x+1)=2x-1

<=> 2x+2=2x-1

<=> 2x+2-2x+1=0

<=>1=0

=>Pt vô nghiệm

11 tháng 3 2022

ơ kìa giúp vs

11 tháng 3 2022

+) 2x – 1 = 0 ⇔ x = Trắc nghiệm Diện tích hình chữ nhật có đáp án 

+) -x2 + 4 = 0 ⇔ x2 = 4 ⇔ x = ±2

+) x2 + 3 = -6 ⇔ x2 = -9 (vô nghiệm vì -9< 0)

+) 4x2 + 4x = -1 ⇔ 4x2 +4x + 1 = 0 ⇔ (2x + 1)2 = 0 ⇔ 2x + 1 = 0 ⇔ x = -Trắc nghiệm Diện tích hình chữ nhật có đáp án 

Đáp án cần chọn là: C

13 tháng 10 2017

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

5 tháng 3 2022

1.\(\left(x+2\right)\left(2x-3\right)=x^2-4\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

2.\(x^2+3x+2=0\)

\(\Leftrightarrow x^2+x+2x+2=0\)

\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

3.\(2x^2+5x+3=0\)

\(\Leftrightarrow2x^2+2x+3x+3=0\)

\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

4.\(x^3+x^2-12x=0\)

\(\Leftrightarrow x\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x\left(x+4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=3\end{matrix}\right.\)

a: \(\Leftrightarrow\left(x+2\right)\left(2x-3\right)-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3-x+2\right)=0\)

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

b: =>(x+1)(x+2)=0

=>x=-1 hoặc x=-2

c: =>(2x+3)(x+1)=0

=>x=-1 hoặc x=-3/2

d: =>x(x+4)(x-3)=0

hay \(x\in\left\{0;-4;3\right\}\)