K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 2 2022

ĐKXĐ: \(x\ge3\)

\(\sqrt{x-1}>\sqrt{x-2}+\sqrt{x-3}\)

\(\Leftrightarrow x-1>2x-5+2\sqrt{x^2-5x+6}\)

\(\Leftrightarrow4-x>2\sqrt{x^2-5x+6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-x\ge0\\\left(4-x\right)^2>4\left(x^2-5x+6\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\3x^2-12x+8< 0\end{matrix}\right.\)

\(\Rightarrow\dfrac{6-2\sqrt{3}}{3}< x< \dfrac{6+2\sqrt{3}}{3}\)

Kết hợp ĐKXĐ \(\Rightarrow3\le x< \dfrac{6+2\sqrt{3}}{3}\)

14 tháng 2 2022

làm thì làm tử tế đéo làm thì biến, địtt cụ mày

 

NV
14 tháng 2 2022

ĐKXĐ: \(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

- Với \(x=-\dfrac{3}{2}\) là nghiệm của BPT

- Với \(x>-\dfrac{3}{2}\Rightarrow2x+3>0\)

\(\Rightarrow\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\)

\(\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\le1\)

\(\Rightarrow3\left(2x-3\right)\le\sqrt{3x^2-3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3< 0\\\left\{{}\begin{matrix}2x-3\ge0\\9\left(2x-3\right)^2\le3x^2-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\11x^2-36x+28\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{14}{11}\le x\le2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< \dfrac{3}{2}\\\dfrac{3}{2}\le x\le2\end{matrix}\right.\) \(\Rightarrow-\dfrac{3}{2}< x\le2\)

Kết hợp ĐKXĐ \(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< x< -1\\1< x\le2\end{matrix}\right.\)

- Với \(x< -\dfrac{3}{2}\Rightarrow2x+3< 0\)

\(\dfrac{3\left(2x-3\right)\left(2x+3\right)}{\sqrt{3x^2-3}}\le2x+3\Leftrightarrow\dfrac{3\left(2x-3\right)}{\sqrt{3x^2-3}}\ge1\)

\(\Rightarrow3\left(2x-3\right)\ge\sqrt{3x^2-3}\)

Do \(x< -\dfrac{3}{2}\Rightarrow3\left(2x-3\right)< 0\Rightarrow\) BPT vô nghiệm

Vậy nghiệm của BPT là \(\left[{}\begin{matrix}-\dfrac{3}{2}\le x< -1\\1< x\le2\end{matrix}\right.\)

25 tháng 3 2021

ĐK: \(x\ge1;x\le-2\)

\(\sqrt{x^2-1}+\sqrt{x^2-x}\le\sqrt{x^2+x-2}\)

\(\Leftrightarrow2x^2-x-1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le x^2+x-2\)

\(\Leftrightarrow x^2-2x+1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)

\(\Leftrightarrow\left(x-1\right)^2+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(x^2-1\right)\left(x^2-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy bất phương trình có nghiệm \(x=1\)

20 tháng 8 2016

ĐK:x\(\ge-1\)(*)

bpt\(\Leftrightarrow3\left(x^2-x+1\right)+2\left(x+1\right)< 5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+1}-\sqrt{x+1}\right)\left(3\sqrt{x^2-x+1}-2\sqrt{x+1}\right)< 0\)

Đến đây bn chia 2 TH rồi giải bình thường nhá:D

 

NV
18 tháng 2 2020

ĐKXĐ: \(x\ge2\)

Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)

Do đó BPT tương đương:

\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)

\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)

\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)

\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)

\(\Leftrightarrow x^2-32x+75\le0\)

\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)

NV
5 tháng 5 2020

ĐKXĐ: \(x\ge\frac{1}{4}\)

\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)

\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)

\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)

Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng

Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)

b/ ĐKXĐ: \(x\ge4\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)

- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\le5\) bình phương 2 vế:

\(2\left(x^2-16\right)>4\left(x-5\right)^2\)

\(\Leftrightarrow x^2-20x+66< 0\)

\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)

Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)

4 tháng 5 2020

x-3 ; mình đánh thiếu