Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)
\(\Leftrightarrow \frac{99-x}{101}+1+\frac{97-x}{103}+1+\frac{95-x}{105}+1+\frac{93-x}{107}+1=0\)
\(\Leftrightarrow \frac{99-x+101}{101}+\frac{97-x+103}{103}+\frac{95-x+105}{105}+\frac{93-x+107}{107}=0\)
\(\Leftrightarrow \frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)
\(\Leftrightarrow (200-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra \(200-x=0\Rightarrow x=200\)
Bài 2:
\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+116}{4}=0\)
\(\Leftrightarrow \frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow \frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow (x+100)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
Vì \(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\neq 0\). Do đó \(x+100=0\Rightarrow x=-100\)
\(Giải:\)
\(ĐK:x\ne\left(-2\right);x\ne\left(-1\right)\)
\(\frac{x^2+2x+2}{x+1}>\frac{x^2+4x+5}{x+2}-1\Leftrightarrow\frac{x^2+2x+2}{x+1}>\frac{x^2+3x+3}{x+2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{x+1}+\frac{1}{x+1}-\frac{x^2+3x+2+1}{x+2}>0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x+1}-\frac{\left(x+1\right)\left(x+2\right)}{x+2}+\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow x+1-x-1+\frac{1}{x+1}-\frac{1}{x+2}>0\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}>0\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}=\frac{1}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}hoặc\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\)
\(+,\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>\left(-2\right)\)
\(+,\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Rightarrow x< \left(-2\right)\)
BPT đã được giải quyết
a) \(\dfrac{1-2x}{4}-2< \dfrac{1-5x}{8}\\ < =>\dfrac{2-4x}{8}-\dfrac{16}{8}< \dfrac{1-5x}{8}\\ < =>2-4x-16< 1-5x\\ < =>-4x+5x< 1-2+16\\ < =>x< 15\)
Vậy : tập nghiệm của bất phương trình là S= \(\left\{x|x< 15\right\}\)
b) \(\dfrac{x-1}{4}-1>\dfrac{x+1}{3}+8\\ < =>\dfrac{3x-3}{12}-\dfrac{12}{12}>\dfrac{4x+4}{12}+\dfrac{96}{12}\\ < =>3x-3-12>4x+4+96\\ < =>3x-4x>4+96+3+12\\ < =>-x>115\\ =>x< -115\)
Vậy: tập nghiệm của bất phương trình là S=\(\left\{x|x< -115\right\}\)
a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)
b: 2/3x>-2
hay x>-2:2/3=-3
c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)
hay x>1/2
d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)
hay x>2:3/5=2x5/3=10/3
\(\dfrac{x+4}{2016}+\dfrac{x+2}{2018}\ge\dfrac{x+14}{2006}+\dfrac{x+83}{1937}\)
\(\Leftrightarrow\dfrac{x+4}{2016}+1+\dfrac{x+2}{2018}+1\ge\dfrac{x+14}{2006}+1+\dfrac{x+83}{1937}+1\)
\(\Leftrightarrow\dfrac{x+2020}{2016}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{2006}-\dfrac{x+2020}{1937}\ge0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2016}+\dfrac{1}{2018}-\dfrac{1}{2006}-\dfrac{1}{1937}\right)\ge0\)
\(\Leftrightarrow x+2020\ge0\Leftrightarrow x\ge-2020\)
Vậy \(x\ge-2020\)
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
\(\dfrac{x-11}{89}\) +\(\dfrac{x-13}{87}+\dfrac{x-15}{85}+\dfrac{x-17}{83}\)=4
⇔\(\dfrac{x-11}{89}+\dfrac{x-13}{87}+\dfrac{x-15}{85}+\dfrac{x-17}{83}-4=0\)
⇔\(\dfrac{x-11}{89}-1+\dfrac{x-13}{87}-1+\dfrac{x-15}{85}-1+\dfrac{x-17}{83}-1=0\)
⇔\(\dfrac{x-100}{89}+\dfrac{x-100}{87}+\dfrac{x-100}{85}+\dfrac{x-100}{83}=0\)
⇔\(\left(x-100\right)\left(\dfrac{1}{89}+\dfrac{1}{87}+\dfrac{1}{85}+\dfrac{1}{83}\right)=0\)
\(Do\) \(\dfrac{1}{89}+\dfrac{1}{87}+\dfrac{1}{85}+\dfrac{1}{83}\)≠\(0\) nên x-100=0 nên x=100
KL........
⇔(\(\dfrac{x-11}{89}\)-1)+(\(\dfrac{x-13}{87}\)-1)+(\(\dfrac{x-15}{85}\)-1)+(\(\dfrac{x-17}{83}\)-1)=0
⇔\(\dfrac{x-100}{89}\)+\(\dfrac{x-100}{87}\)+\(\dfrac{x-100}{85}\)+\(\dfrac{x-100}{83}\)=0
⇔(x-100)(\(\dfrac{1}{89}\)+\(\dfrac{1}{87}\)+\(\dfrac{1}{85}\)+\(\dfrac{1}{83}\))=0 (1)
Do 1/89+1/87+1/85+1/83≠0 nên (1)⇔x-100=0 ⇔x=100
Vậy tập nghiệm của PT là S=\(\left\{100\right\}\)
a: \(x>3:\dfrac{1}{2}=6\)
b: \(x>-2:\left(-\dfrac{1}{3}\right)=6\)
c: \(x>-4:\dfrac{2}{3}=-6\)
d: \(x< -6:\dfrac{3}{5}=-10\)
\(\dfrac{x+2}{89}+\dfrac{x+5}{86}>\dfrac{x+8}{83}+\dfrac{x+11}{80}\)
\(\Leftrightarrow\dfrac{x+91}{89}+\dfrac{x+91}{86}>\dfrac{x+91}{83}+\dfrac{x+91}{80}\)
\(\Leftrightarrow\left(x+91\right)\left(\dfrac{1}{89}+\dfrac{1}{86}\right)>\left(x+91\right)\left(\dfrac{1}{83}+\dfrac{1}{80}\right)\)
Mà \(\dfrac{1}{89}+\dfrac{1}{86}< \dfrac{1}{83}+\dfrac{1}{80}\)
Nên \(x+91< 0\Leftrightarrow x< -91\)