Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x và y (xe) lần lượt là số xe lớn và số xe nhỏ.
Điều kiện: x, y > 0
Theo đề bài, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-x+y=2\\\dfrac{180}{x}-\dfrac{180}{y}=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-x=2\\180\times\dfrac{y-x}{xy}=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-x=2\\xy=\dfrac{180\times2}{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2+x\\x\left(2+x\right)=24\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2+x\\\left(x+6\right)\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2+x\\\left[{}\begin{matrix}x=-6\left(loai\right)\\x=4\left(nhan\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
Vậy có 4 xe lớn.
gọi x( xe) là số xe loại 30 chỗ(x thuộc N*)
gọi y( xe) là số xe loại 45 chỗ(y thuộc N*)
theo đề bài t có hệ pt:
\(\hept{\begin{cases}x+y=11\\30x+45y=435\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4\\y=7\end{cases}}\)
vậy nhà trường cần thuê 4 xe loại 30 chỗ, 7 xe loại 45 chỗ
Gọi số xe loại 25 chỗ ngồi mà trường thuê là \(x\left(x\in N,12>x>0\right)\)
Số xe loại 45 chỗ ngồi mà trường thuê là \(y\left(y\in N,12>y>0\right)\)
Ta có: \(x+y=12\left(1\right)\)
Do chỉ có hai xe vừa đủ chỗ ngồi các xe còn lại đều thừa 1 chỗ
Số xe bị thừa chỗ là:
\(12-2=10\) (xe) ⇒ dư 10 chỗ
Vậy tổng số chỗ ngồi 12 xe này là: `450 + 10 = 460` (chỗ)
⇒ \(25x+45y=460\left(2\right)\)
Từ (1) và (2) ta có hệ pt:
\(\left\{{}\begin{matrix}x+y=12\\25x+45y=460\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}25x+25y=300\\25x+45y=460\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}20y=160\\x+y=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=8\left(tm\right)\\x=12-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=8\left(tm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Vậy số xe 25 chỗ trường thuê là 4 xe, số xe 45 chỗ mà trường thuê là 8 xe
Gọi số xe loại 30 chỗ ngồi là x(xe)
số xe loại 45 chỗ ngồi là y(xe)
ĐK: \(0< x,y< 11\), \(x,y\in N\)
Theo đề ta có: \(x+y=11\)(*)
Số học sinh ngồi trên xe loại 30 chỗ ngồi: \(30x\) (học sinh)
Số học sinh ngồi trên xe loại 45 chỗ ngồi: \(45y\) (học sinh)
Theo đề ta lại có: \(30x+45y=435\)(**)
Từ (*) và (**), ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=11\\30x+45y=435\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}45x+45y=495\\30x+45y=435\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15x=60\\y=11-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)(thoả mãn điều kiện)
Vậy 4 xe loại 30 chỗ ngồi và 7 loại xe 45 chỗ ngồi.
Gọi x là số xe 30 chỗ, y là số xe 45 chỗ (x, y > 0)
theo đề bài ta có hệ phương trình sau:
\(\left\{{}\begin{matrix}x+y=11\\30x+45y=435\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Mik chỉ cho bạn đáp án vì năm nay toan61 thực tề được phép xài máy tính nha! Chúc bạn thi tốt!
Gọi số xe to hoặc số xe nhỏ lần lượt là \(a,b\)(xe) (\(a,b\inℕ^∗\))
Theo bài ra, ta có hệ phương trình:
\(\hept{\begin{cases}a=b-2\\\frac{180}{a}-\frac{180}{b}=15\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{180}{b-2}-\frac{180}{b}=15\end{cases}\Leftrightarrow\hept{\begin{cases}a=b-2\\\frac{360}{b\left(b-2\right)}=15\end{cases}}}\)
\(\frac{360}{b\left(b-2\right)}=15\Rightarrow15b\left(b-2\right)=360\Leftrightarrow\orbr{\begin{cases}b=6\left(tm\right)\\b=-4\left(l\right)\end{cases}}\)
Suy ra \(\hept{\begin{cases}a=4\\b=6\end{cases}}\).
Gọi xe 4 chỗ là a, số xe 7 chỗ là b:
\(\hept{\begin{cases}a+b=5\\4a+7b=445\end{cases}}\Leftrightarrow\hept{\begin{cases}a=75\\b=50\end{cases}}\)
Gọi số xe chở 4 khách là x
Gọi số xe chở 7 khách là y
Ta có hệ phương trình
x+y=85 (1)
4x+7y=445 (2)
Gải hệ phương trình trên để tính số xe mỗi loại
Gọi số xe loại 45 chỗ và 15 chỗ lần lượt là a,b
Theo đề, ta có hệ:
45a+15b=345 và a+b=9
=>a=7 và b=2