K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Đáp án A .

          Ta có:

          y ' = 6 x 2 + 6 x − 12 ,  cho  y ' = 0 ⇔ x = − 2 ∉ − 1 ; 2 x = 1 ∈ − 1 ; 2 .

          y − 1 = 15 ;   y 2 = 6 ;   y 1 = − 5.

          Vậy  x 0 = 1.

19 tháng 8 2019

Đáp án B

Đáy hình thoi cạnh a, góc B C A ^ = 30 0 ⇒ B C D ^ = 60 0

Nên suy ra B D = a , A C = 2. O C = 2. a 3 2 = a 3

Vậy diện tích đáy d t A B C D = 1 2 A C . B D = 1 2 . a 3 . a = a 2 3 2

Vậy thể tích  V = 1 3 S O . d t A B C D = a 3 3 8

7 tháng 12 2019

30 tháng 12 2018

Đáp án là B

31 tháng 7 2017

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

1 tháng 7 2018

28 tháng 1 2019

Đáp án C

Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy

Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.

17 tháng 8 2017

Đáp án D

Hàm số  y = f ( x )  đạt cực tiểu tại x 0 = 0  

Hàm số  y = f ( x )  có ba điểm cực trị.

Phương trình  f ( x ) = 0  có 4 nghiệm phân biệt

Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]

13 tháng 11 2018

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

3 tháng 9 2017

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.