Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)+\left(y^2-22y+121\right)+2\\ A=\left(x-2y\right)^2+\left(x+5\right)^2+\left(y-11\right)^2+2\ge2>0\)
A = [(x2 - 4xy + 4y2) + 10.(x - 2y) + 25] + (y2 - 2y + 1) + 9 = (x- 2y + 5)2 + (y - 1)2 + 9 \(\ge\) 0 + 0 + 9 = 9
=> A nhỏ nhất bằng 9 tại y - 1= 0 và x - 2y + 5 = 0
=> y = 1 và x = -3
a, phân tích đa thức thành tổng của bình phương. Vì các bình phương luôn lớn hơn hoặc bằng 0 nên GTNN = phần dư.
ở bài này GTNN=10
b,tương tự câu trên luôn, nhưng có vẻ bài này khó hơn nhiều đấy.
Mẹo nè: bạn đưa các phần tử có x về trước hết rùi đưa về bình phương của 3 số, thêm bớt đc phần còn lại nhét vào 1 bình phương nữa=>còn dư đấy chính là GTNN đó.
Bài này chắc là hơi khó đối với bạn nên minh làm sơ sơ cho bạn nghen
x^2-4xy+5y^2+10x-22y+28
x² - 4xy +10x +4y² + 25-20y +y²-2y +3
(x-2y+5)²+(y-1)²+2≥2
VẬy GTNN =2 <=>x=-3;y=1
Bạn sửa lại đề đi:
Tìm nghiệm nguyên của phương trình: \(^{x^2-4xy+5y^2+10x-22y+26=0}\)
a) Ta có \(Q=\frac{x-9}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
Áp dụng BĐT cô-si, ta có \(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge10\Rightarrow Q\ge10-6=4\)
Dấu = xảy ra <=> x=4
b)Tá có \(M=x^2+4y^2+1+4xy+2x+2y+y^2-2y+1+10\)
=\(\left(x+2y+1\right)^2+\left(y-1\right)^2+10\ge10\)
dấu = xảy ra <=> y=1 và x=-3
^_^
\(x^2+5y^2+2y-4xy-3=0\)
\(x^2-4xy+4y^2+y^2+2y+1-4=0\)
\(\left(x-2y\right)^2+\left(y+1\right)^2-4=0\)
Vì \(\left(x-2y\right)^2\) lớn hơn hoặc bằng 0
và \(\left(y+1\right)^2\) lớn hơn hoặc bằng 0
Nên \(\left(x-2y\right)^2+\left(y+1\right)^2-4\) lớn hơn hoặc bằng -4
nên GTNN là -4
ban đầu m cũng làm giống bạn, nhưng đọc lại đề bài m cảm thấy khó hiểu : tìm X để cho Y thỏa mãn
đề m thi HK2 ấy
Ta có:
\(x^2+3y^2+2xy-10x-14y+18=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2-10x-10y+25\right)+2y^2-4y-7=0\)
\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2y^2-4y-7=0\)
\(\Leftrightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)=9\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)
Vì \(2\left(y-1\right)^2\ge0\forall y\) nên \(\left(x+y-5\right)^2\le9\).
\(\Rightarrow-3\le x+y-5\le3\)
\(\Rightarrow2\le x+y\le8\)
Tới đây bạn suy ra GTNN và GTLN rồi tính 5x + 5y bình thường.
Lời giải:
Ta có:
\(A=x^2+4xy+5y^2+10x-22y+28\)
\(=(x^2+4xy+4y^2)+y^2+10x-22y+28\)
\(=(x+2y)^2+2.5(x+2y)+5^2+y^2-42y+3\)
\(=(x+2y+5)^2+y^2-42y+3\)
\(=(x+2y+5)^2+(y^2-42y+21^2)-438\)
\(=(x+2y+5)^2+(y-21)^2-438\)
\(\geq 0+0-438=-438\)
Vậy \(A_{\min}=-438\Leftrightarrow \left\{\begin{matrix} x+2y+5=0\\ y-21=0\end{matrix}\right.\Leftrightarrow x=-47; y=21\)