Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y=2\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)=2sin\left(x-\frac{\pi}{3}\right)\)
\(sin\left(x-\frac{\pi}{3}\right)\le1\) ;\(\forall x\Rightarrow y\le2\) ;\(\forall x\)
\(y_{max}=2\) khi \(sin\left(x-\frac{\pi}{3}\right)=1\)
2.
\(y=5\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)\)
Đặt \(\frac{3}{5}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow y=5\left(sinx.cosa+cosx.sina\right)=5sin\left(x+a\right)\)
\(-1\le sin\left(x+a\right)\le1\Rightarrow-5\le y\le5\)
\(y_{min}=-5\) ; \(y_{max}=5\)
\(y=\dfrac{3sinx-cosx-4}{2sinx+cosx-3} \Leftrightarrow (2sinx+cosx-3)y=3sinx-cosx-4 \Leftrightarrow (3-2y)sinx+(y-1)cosx=4-3y \)
\(\Rightarrow (3-2y)^2+(y-1)^2 ≥ (4-3y)^2 \Leftrightarrow 5y^2−14y+10 ≥ 16−24y+9y^2 \Leftrightarrow 1 ≤ y ≤ \dfrac{3}{2}\)
Vậy hàm số không có giá trị nguyên.
\(y=cosx-3.sinx\le\sqrt{\left(1+\left(-3\right)^2\right)\left(cos^2x+sin^2x\right)}=\sqrt{10}\)
\(\Rightarrow y_{max}=\sqrt{10}\)